<div class="csl-bib-body">
<div class="csl-entry">Wagner-Schirrmeister, J., Röpke, R. C., Johnen, T., Carpantier, R., Schroeder, U., & Scheffel, M. (2025). Interactive Long-Term Study Planning for Individual Student Support, Leveraging Process Mining and AI. In <i>The Fifteenth International Conference on Learning Analytics & Knowledge</i> (pp. 299–299).</div>
</div>
This demo showcases an AI- and Process Mining-powered interactive study planning
tool designed to assist students in higher education with complex personalized, datadriven
feedback. The tool integrates rule-based artificial intelligence (AI) and process mining
to provide real-time, context-aware guidance, enabling students to visualize study program
structures and receive automated feedback on plan validity. By leveraging historical student
data and curriculum rules, the tool offers personalized recommendations, empowering students
to make informed, autonomous decisions about their study paths. Developed through
an iterative human-centered design process, the tool addresses the complexities of long-term
academic planning while balancing guidance with student autonomy. Through ongoing user
testing and stakeholder engagement, the tool is continually adapted to the requirements,
feedback, and insights of users, stakeholders, and researchers. The demo will focus on the
tool’s interface and feedback mechanisms, highlighting its potential to support dynamic longterm
study planning, especially regarding deviations from recommended study plans. With
our tool, we address the complexities of study planning and support, giving students the tools
to make informed decisions and offering promising and more successful study paths. In doing
so, we aim to support students in managing the challenge of comprehensive long-term study
planning successfully, leading to better student outcomes as preliminary results indicate.
en
dc.language.iso
en
-
dc.subject
Study Planning
en
dc.subject
Feedback
en
dc.subject
Artificial Intelligence
en
dc.subject
Process Mining
en
dc.subject
Evaluation
en
dc.title
Interactive Long-Term Study Planning for Individual Student Support, Leveraging Process Mining and AI
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Ruhr University Bochum, Germany
-
dc.contributor.affiliation
RWTH Aachen University, Germany
-
dc.contributor.affiliation
Ruhr University Bochum, Germany
-
dc.contributor.affiliation
RWTH Aachen University, Germany
-
dc.contributor.affiliation
Ruhr University Bochum, Germany
-
dc.relation.isbn
979-8-4007-0701-8
-
dc.description.startpage
299
-
dc.description.endpage
299
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
The Fifteenth International Conference on Learning Analytics & Knowledge
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publication.orgunit
E065-01 - Fachbereich Center for Technology and Society (CTS)
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0009-0003-3220-0971
-
tuw.author.orcid
0000-0003-0250-8521
-
tuw.author.orcid
0000-0001-8947-3506
-
tuw.author.orcid
0000-0002-5178-8497
-
tuw.author.orcid
0000-0003-4395-4819
-
tuw.event.name
15th International Conference on Learning Analytics & Knowledge (LAK '25)
en
tuw.event.startdate
03-03-2025
-
tuw.event.enddate
07-03-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Dublin
-
tuw.event.country
IE
-
tuw.event.presenter
Wagner-Schirrmeister, Johannes
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Ruhr University Bochum, Germany
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
RWTH Aachen University, Germany
-
crisitem.author.dept
Ruhr University Bochum, Germany
-
crisitem.author.dept
RWTH Aachen University, Germany
-
crisitem.author.dept
Ruhr University Bochum, Germany
-
crisitem.author.orcid
0009-0003-3220-0971
-
crisitem.author.orcid
0000-0003-0250-8521
-
crisitem.author.orcid
0000-0001-8947-3506
-
crisitem.author.orcid
0000-0002-5178-8497
-
crisitem.author.orcid
0000-0003-4395-4819
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering