<div class="csl-bib-body">
<div class="csl-entry">Panchagatti, A., Byungjun Kim, Gerstoft, P., & Mecklenbräuker, C. (2025). Channel Estimation in Time-Varying Ocean Environments using OTFS Modulation. In <i>2024 58th Asilomar Conference on Signals, Systems, and Computers</i> (pp. 1404–1408). https://doi.org/10.1109/IEEECONF60004.2024.10942619</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/215617
-
dc.description.abstract
Communication through the ocean is challenging due to its rapidly time-varying nature. Studies indicate that the ocean channel in the delay-Doppler domain displays a sparse structure that remains constant for an extended duration compared to other domains. Recent advancements in orthogonal time-frequency spacing (OTFS) have demonstrated the feasibility of communication within the delay-Doppler domain. Given the context of a sparse 2-D delay-Doppler channel $H \in \mathbb{C}^{M \times N}$ with $M$ frequency tones and $N$ pulses, the algorithm leverages the properties of the cyclic prefix (CP). This characteristic trans- forms the cyclic convolution of the 2-D input, structured using OTFS, with channel H into an estimation of FFT(Vec(H)). The process results in an ultra-long FFT, providing a precise channel estimate. This method combines long fast Fourier transform (FFT) sequences with the diagonalization method, making our algorithm simple to implement on hardware. Additionally, we exploit the sparsity of the channel matrix through the sparse Bayesian learning (SBL) method.
en
dc.language.iso
en
-
dc.subject
Channel estimation
en
dc.subject
time-varying channels
en
dc.subject
Delay-spread
en
dc.subject
OTFS
en
dc.subject
sparse Bayesian learning (SBL)
en
dc.subject
Underwater Acoustics
en
dc.title
Channel Estimation in Time-Varying Ocean Environments using OTFS Modulation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of California, San Diego, United States of America (the)
-
dc.contributor.affiliation
University of California, San Diego, United States of America (the)
-
dc.contributor.affiliation
Scripps Institution of Oceanography, United States of America (the)
-
dc.relation.isbn
979-8-3503-5405-8
-
dc.relation.doi
10.1109/IEEECONF60004.2024
-
dc.relation.issn
1058-6393
-
dc.description.startpage
1404
-
dc.description.endpage
1408
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2576-2303
-
tuw.booktitle
2024 58th Asilomar Conference on Signals, Systems, and Computers