<div class="csl-bib-body">
<div class="csl-entry">Kalodikis, D. M., & Matz, G. (2025). Graph Signal Processing for Compositional Data. In <i>2024 58th Asilomar Conference on Signals, Systems, and Computers</i> (pp. 413–417). IEEE. https://doi.org/10.1109/IEEECONF60004.2024.10942632</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/215968
-
dc.description.abstract
The field of graph signal processing (GSP) offers numerous methodologies for handling data whose domain is captured by graphs. In this work, we introduce novel GSP concepts that are tailored to compositional data, a type of data that represents parts of a whole and features an inherently non-Euclidean geometry. To construct signature graphs (multilayer signed graphs) for this kind of data, we formulate novel involutions (self-inverse mappings) and we introduce appropriate distance metrics. We further describe how to identify the pertinent involutions from given datasets in semi-supervised and unsupervised scenarios. The usefulness of our framework is illustrated experimentally in the context of data clustering problems.
en
dc.language.iso
en
-
dc.subject
Graph Signal Processing
en
dc.subject
Signed Graph
en
dc.subject
Multilayer Graph
en
dc.subject
Compositional Data
en
dc.subject
Involutions
en
dc.title
Graph Signal Processing for Compositional Data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-5405-8
-
dc.relation.doi
10.1109/IEEECONF60004.2024
-
dc.relation.issn
2576-2303
-
dc.description.startpage
413
-
dc.description.endpage
417
-
dc.rights.holder
IEEE Intellectual Property Rights Office
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 58th Asilomar Conference on Signals, Systems, and Computers
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I7
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Telecommunication
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
67
-
tuw.researchTopic.value
33
-
tuw.publication.orgunit
E389-03 - Forschungsbereich Signal Processing
-
tuw.publisher.doi
10.1109/IEEECONF60004.2024.10942632
-
dc.description.numberOfPages
5
-
tuw.author.orcid
0000-0003-1784-806X
-
tuw.event.name
58th Asilomar Conference on Signals, Systems, and Computers (2024)