<div class="csl-bib-body">
<div class="csl-entry">Arnold, A., & Toshpulatov, G. (2025). Trend to Equilibrium and Hypoelliptic Regularity for the Relativistic Fokker–Planck Equation. <i>SIAM Journal on Mathematical Analysis</i>, <i>57</i>(3), 2911–2951. https://doi.org/10.1137/24M1671244</div>
</div>
-
dc.identifier.issn
0036-1410
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216104
-
dc.description.abstract
We consider the relativistic, spatially inhomogeneous Fokker--Planck equation with an external confining potential. We prove the exponential time decay of solutions toward the global equilibrium in weighted L² and Sobolov spaces. Our result holds for a wide class of external potentials and the estimates on the rate of convergence are explicit and constructive. Moreover, we prove that the associated semigroup of the equation has hypoelliptic regularizing properties and we obtain explicit rates on this regularization. The technique is based on the construction of suitable Lyapunov functionals.
en
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Mathematical Analysis
-
dc.subject
kinetic theory
en
dc.subject
Fokker-Planck equation
en
dc.subject
relativistic diffusion
en
dc.subject
confinement potential
en
dc.subject
degenerate diffusion
en
dc.subject
long-time behavior
en
dc.subject
convergence to equilibrium
en
dc.subject
hypocoercivity
en
dc.subject
hypoelliptic regularity
en
dc.subject
Lyapunov functional
en
dc.title
Trend to Equilibrium and Hypoelliptic Regularity for the Relativistic Fokker–Planck Equation