<div class="csl-bib-body">
<div class="csl-entry">Stojanov, R., Jovanovikj, M., Gramatikov, S., Mishkovski, I., Zdravevski, E., Sasanski, D., Karapancheva, Z., Spasovski, G., Vasileska, I., Eftimov, T., Zhuojun, W., Jankowski, J., & Trajanov, D. (2025). Applicability Assessment of Technologies for Predictive and Prescriptive Analytics of Nephrology Big Data. <i>Proteomics</i>, Article e202400135. https://doi.org/10.1002/pmic.202400135</div>
</div>
-
dc.identifier.issn
1615-9853
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216199
-
dc.description.abstract
The integration of big data into nephrology research will open new avenues for analyzing and understanding complex biological datasets, driving advances in personalized management of kidney diseases. This paper describes the multifaceted challenges and opportunities by incorporating big data in nephrology, emphasizing the importance of data standardization, advanced storage solutions, and advanced analytical methods. We discuss the role of data science workflows, including data collection, preprocessing, integration, and analysis, in facilitating comprehensive insights into disease mechanisms and patient outcomes. Furthermore, we highlight predictive and prescriptive analytics, as well as the application of large language models (LLMs) in improving clinical decision-making and enhancing the accuracy of disease predictions. The use of high-performance computing (HPC) is also examined, showcasing its role in processing large-scale datasets and accelerating machine learning algorithms. Through this exploration, we aim to provide a comprehensive overview of the current state and future directions of big data analytics in nephrology, with a focus on enhancing patient care and advancing medical research.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Proteomics
-
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
-
dc.subject
big data analytics
en
dc.subject
data integration
en
dc.subject
data standardization
en
dc.subject
large language models
en
dc.subject
nephrology
en
dc.title
Applicability Assessment of Technologies for Predictive and Prescriptive Analytics of Nephrology Big Data
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell 4.0 International
de
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
en
dc.identifier.pmid
40420672
-
dc.contributor.affiliation
Saints Cyril and Methodius University of Skopje, Republic of North Macedonia
-
dc.contributor.affiliation
Saints Cyril and Methodius University of Skopje, Republic of North Macedonia
-
dc.contributor.affiliation
Saints Cyril and Methodius University of Skopje, Republic of North Macedonia
-
dc.contributor.affiliation
Saints Cyril and Methodius University of Skopje, Republic of North Macedonia
-
dc.contributor.affiliation
Saints Cyril and Methodius University of Skopje, Republic of North Macedonia
-
dc.contributor.affiliation
Saints Cyril and Methodius University of Skopje, Republic of North Macedonia
-
dc.contributor.affiliation
Saints Cyril and Methodius University of Skopje, Republic of North Macedonia