<div class="csl-bib-body">
<div class="csl-entry">De Landsheere, J. (2025). <i>Graph Representations and Neural Network Architectures for Reaction Barrier Height Prediction</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.128222</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.128222
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216211
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Chemical reactions are fundamental transformations that drive countless natural phenomena and technological applications, with their barrier heights, the minimum energy required for a reaction to potentially proceed, being crucial for understanding reactions. Deep learning approaches for predicting reaction barrier heights have shown promise but typically rely on explicit atom-to-atom mapping information, which is often unavailable in real-world scenarios. This thesis systematically explores graph representations and neural network architectures for predicting reaction barrier heights without relying on explicit atom mapping. We show that by incorporating reaction-specific inductive biases into neural network architectures, we can significantly reduce the performance gap between mapped and unmapped representations. Our best mapped-representation using Principal Neighbourhood Aggregation on the Condensed Graph of Reaction achieves a mean absolute error of 4.32 ± 0.45 kcal/mol, while our proposed Reaction Graph Transformer operating without atom mapping information reaches 6.18 ± 0.30 kcal/mol. The performance gap narrows even further on single reaction-type datasets, demonstrating that reaction-specific architectures can effectively compensate for missing mapping information. This work establishes a pathway toward more practical reaction property prediction tools that can operate effectively when atom mapping information is unavailable, enabling broader application in computational chemistry and drug discovery. Additionally, we contribute a flexible, modular code base for reaction property prediction that facilitates experimentation with different representations and architectures.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Machinelles Lernen
de
dc.subject
Chemische Reaktionen
de
dc.subject
Machine Learning
en
dc.subject
Chemical Reactions
en
dc.title
Graph Representations and Neural Network Architectures for Reaction Barrier Height Prediction
en
dc.title.alternative
Graph Repräsentationen und Architekturen neuronaler Netzwerke für die Vorhersage von Aktivierungsenergien
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.128222
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Jasper De Landsheere
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Heid, Esther Carina
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering