<div class="csl-bib-body">
<div class="csl-entry">Schwarzinger, P. (2025). <i>Integrating causal discovery and machine learning for enhanced financial forecasting</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.130133</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.130133
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216394
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Financial market forecasting relies heavily on selecting relevant input features, often based on correlations that may include redundant or irrelevant information, thus reducing predictive accuracy. This thesis explores how integrating causal discovery techniques with machine learning models can enhance forecasting reliability. Specifically, the causal discovery algorithm NTS-NOTEARS is applied to identify causal relationships within financial data. The focus is on forecasting NASDAQ-100 closing prices using an enriched dataset that includes technical indicators and macroeconomic variables over a ten-year period. Causally selected features are used as inputs to Long Short-Term Memory (LSTM) models and Ordinary Least Squares (OLS) regression models. The models are evaluated using standard financial forecasting metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The results indicate that features selected via causal discovery significantly improve the accuracy and robustness of LSTM-based forecasts compared to traditional correlation-based feature selection. Furthermore, LSTM models incorporating causally selected features outperform OLS regression models. These findings demonstrate that combining causal discovery with machine learning offers a promising path toward more reliable financial forecasting.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Causal discovery
en
dc.subject
Financial forecasting
en
dc.subject
Feature selection
en
dc.subject
Long Short-Term Memory
en
dc.subject
Time series analysis
en
dc.title
Integrating causal discovery and machine learning for enhanced financial forecasting
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.130133
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Pia Schwarzinger
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E194 - Institut für Information Systems Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17565999
-
dc.description.numberOfPages
71
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.openairetype
master thesis
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering