<div class="csl-bib-body">
<div class="csl-entry">Altmann, F., Kuzdas, D., Murschenhofer, D., Bartlechner, J., Hametner, C., Jakubek, S., & Braun, S. (2025). A numerically highly efficient dynamic quasi-2D PEMFC model including non-isothermal and phase change processes. In W. G. Bessler, M. Kamlah, P. Seegert, A. Weber, & T. Wetzel (Eds.), <i>Proceedings of the 21st Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies</i> (pp. 95–95). Hochschule Offenburg. https://doi.org/10.34726/9842</div>
</div>
To improve the durability and performance of proton exchange membrane fuel cells, we present a quasi-2D, time-dependent multiphase model that captures key spatial and temporal dynamics with high computational efficiency. Unlike 0D/1D models, it resolves spatial variations, and unlike full 3D models, it enables fast transient simulations. The model incorporates convection, diffusion, capillary effects, membrane water transport, nitrogen crossover, heat generation, and sorption kinetics. A linearisation scheme with Chebyshev collocation ensures near real-time performance. Validation against detailed 3D CFD shows strong agreement in polarisation behaviour, species distributions, water content, and temperature profiles. Simulations under dynamic loads highlight the importance of spatially resolved water transport. This efficient, accurate model enables advanced control design, parametric studies, and predictive diagnostics, supporting improved fuel cell operation and lifetime.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
dynamic model
en
dc.subject
transient response
en
dc.subject
non-isothermal effects
en
dc.subject
liquid water formation
en
dc.subject
high computational efficiency
en
dc.title
A numerically highly efficient dynamic quasi-2D PEMFC model including non-isothermal and phase change processes
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/9842
-
dc.contributor.editoraffiliation
Offenburg University of Applied Sciences, Germany
-
dc.contributor.editoraffiliation
Karlsruhe Institute of Technology, Germany
-
dc.contributor.editoraffiliation
Karlsruhe Institute of Technology, Germany
-
dc.contributor.editoraffiliation
Karlsruhe Institute of Technology, Germany
-
dc.contributor.editoraffiliation
Karlsruhe Institute of Technology, Germany
-
dc.relation.isbn
978-3-943301-35-9
-
dc.relation.doi
10.48584/opus-10318
-
dc.description.startpage
95
-
dc.description.endpage
95
-
dc.rights.holder
Altmann Florian
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Proceedings of the 21st Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies
-
tuw.relation.publisher
Hochschule Offenburg
-
tuw.relation.publisherplace
Offenburg
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
E3
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Climate Neutral, Renewable and Conventional Energy Supply Systems