<div class="csl-bib-body">
<div class="csl-entry">Halla, M., Kachanovska, M., & Wess, M. (2025). Radial Perfectly Matched Layers and Infinite Elements for the Anisotropic Wave Equation. <i>SIAM Journal on Mathematical Analysis</i>, <i>57</i>(3), 3171–3216. https://doi.org/10.1137/24M1636551</div>
</div>
-
dc.identifier.issn
0036-1410
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216632
-
dc.description.abstract
We consider the scalar anisotropic wave equation. Recently a convergence analysis for radial perfectly matched layers (PMLs) in the frequency domain was reported, and in the present article we continue this approach into the time domain. First we explain why there is a good hope that radial complex scalings can overcome the instabilities of PML methods caused by anisotropic materials. Next we discuss some sensitive details, which seem like a paradox at first glance: If the absorbing layer and the inhomogeneities are sufficiently separated, then the solution is indeed stable. However, for more general data the problem becomes unstable. In numerical computations we observe instabilities regardless of the position of the inhomogeneities, although the instabilities arise only for fine enough discretizations. As a remedy we propose a complex frequency shifted scaling and discretizations by Hardy space infinite elements or truncation-free PMLs. We show numerical experiments which confirm the stability and convergence of these methods.
en
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Mathematical Analysis
-
dc.subject
perfectly matched layers
en
dc.subject
Hardy spaces
en
dc.subject
infinite elements
en
dc.subject
anisotropic wave equation
en
dc.title
Radial Perfectly Matched Layers and Infinite Elements for the Anisotropic Wave Equation
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Karlsruhe Institute of Technology, Germany
-
dc.contributor.affiliation
Institut Polytechnique de Paris, France
-
dc.description.startpage
3171
-
dc.description.endpage
3216
-
dc.type.category
Original Research Article
-
tuw.container.volume
57
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
SIAM Journal on Mathematical Analysis
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
tuw.publisher.doi
10.1137/24M1636551
-
dc.date.onlinefirst
2025-06-16
-
dc.identifier.eissn
1095-7154
-
dc.description.numberOfPages
46
-
tuw.author.orcid
0000-0002-3010-3540
-
tuw.author.orcid
0000-0001-9991-9874
-
tuw.author.orcid
0000-0001-6323-0821
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
Institut Polytechnique de Paris
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.orcid
0000-0001-9991-9874
-
crisitem.author.orcid
0000-0001-6323-0821
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling