<div class="csl-bib-body">
<div class="csl-entry">Eschner, J., Labadie‐Tamayo, R., Zeppelzauer, M., & Waldner, M. (2025). Interactive discovery and exploration of visual bias in generative text‐to‐image models. <i>Computer Graphics Forum</i>, Article e70135. https://doi.org/10.1111/cgf.70135</div>
</div>
-
dc.identifier.issn
0167-7055
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/216865
-
dc.description.abstract
Bias in generative Text-to-Image (T2I) models is a known issue, yet systematically analyzing such models' outputs to uncover it remains challenging. We introduce the Visual Bias Explorer (ViBEx) to interactively explore the output space of T2I models to support the discovery of visual bias. ViBEx introduces a novel flexible prompting tree interface in combination with zero-shot bias probing using CLIP for quick and approximate bias exploration. It additionally supports in-depth confirmatory bias analysis through visual inspection of forward, intersectional, and inverse bias queries. ViBEx is model-agnostic and publicly available. In four case study interviews, experts in AI and ethics were able to discover visual biases that have so far not been described in literature.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Computer Graphics Forum
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Visualization
en
dc.subject
Bias
en
dc.subject
Artificial Intelligence
en
dc.title
Interactive discovery and exploration of visual bias in generative text‐to‐image models
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
St. Pölten University of Applied Sciences, Austria
-
dc.contributor.affiliation
St. Pölten University of Applied Sciences, Austria