<div class="csl-bib-body">
<div class="csl-entry">Kapenekakis, A., Dell’Aglio, D., Vesteghem, C., Poulsen, L., Bøgsted, M., Garofalakis, M., & Hose, K. (2025). Synthesizing Accurate Relational Data under Differential Privacy. In <i>2024 IEEE International Conference on Big Data (BigData)</i> (pp. 433–439). IEEE. https://doi.org/10.1109/BigData62323.2024.10825515</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/217152
-
dc.description.abstract
Medical data is sensitive personal data which, according to GDPR and HIPAA, necessitates regulations concerning their use. Anonymizing this data prior to research would allow for broader access, due to a lower sensitivity. Privacy-aware data synthesis has been proposed as a solution. However, current algorithms face difficulties in synthesizing medical data while maintaining privacy and utility. This is due to the structure of medical data which consists of multiple interlinked tables with high dimensional columns containing sequential aspects of the patient trajectory. The resulting number of correlations is intractable to model naively and, if relational correlations are not accounted for, the resulting data has poor utility (e.g., leads to invalid patient trajectories). In this paper, we present MARE, a relational synthesis algorithm which focuses on a set of core correlations found in relational data while pruning others. The resulting lower computational complexity allows MARE to produce accurate relational data. We showcase that MARE can synthesize multiple medical datasets, which contain sequential aspects, while maintaining utility in form of inter-table and inter-row correlations and privacy guarantees.
en
dc.language.iso
en
-
dc.subject
Differential privacy
en
dc.subject
Correlation
en
dc.subject
Accuracy
en
dc.subject
Sensitivity
en
dc.subject
Computational modeling
en
dc.subject
Data models
en
dc.subject
Regulation
en
dc.subject
Trajectory
en
dc.subject
Faces
en
dc.subject
Synthetic data
en
dc.title
Synthesizing Accurate Relational Data under Differential Privacy
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Athena Research and Innovation Center In Information Communication & Knowledge Technologies, Greece
-
dc.relation.isbn
979-8-3503-6248-0
-
dc.relation.doi
10.1109/BigData62323.2024
-
dc.relation.issn
2639-1589
-
dc.description.startpage
433
-
dc.description.endpage
439
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2573-2978
-
tuw.booktitle
2024 IEEE International Conference on Big Data (BigData)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1109/BigData62323.2024.10825515
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0003-0924-7811
-
tuw.author.orcid
0000-0003-4904-2511
-
tuw.author.orcid
0000-0003-2301-9081
-
tuw.author.orcid
0000-0002-0466-976X
-
tuw.author.orcid
0000-0001-9192-1814
-
tuw.author.orcid
0000-0003-0285-3907
-
tuw.author.orcid
0000-0001-7025-8099
-
tuw.event.name
2024 IEEE International Conference on Big Data (BigData)
en
tuw.event.startdate
15-12-2024
-
tuw.event.enddate
18-12-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Washington, D.C.
-
tuw.event.country
US
-
tuw.event.presenter
Kapenekakis, Antheas
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
Athena Research and Innovation Center In Information Communication & Knowledge Technologies, Greece
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence