<div class="csl-bib-body">
<div class="csl-entry">Howlader, P., Kwuida, L., Behrisch, M., & Liau, C.-J. (2025, June 22). <i>Independent set of axioms of double Boolean algebras</i> [Conference Presentation]. AAA 107 - 107th Workshop on General Algebra, Bern, Switzerland. http://hdl.handle.net/20.500.12708/217195</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/217195
-
dc.description
Due to indisposition of Prosenjit Howlader, the conference talk was given by Mike Behrisch.
-
dc.description.abstract
The notion of double Boolean algebra was introduced by Wille to explore the equational class of protoconcept algebras. Many authors have studied fundamental results, including the Prime Ideal Theorem, topological representation, and the congruence structure for dBas. Double Boolean algebras are defined by a set of 23 equations given in the subsequent definition.
Definition: An algebra π― := (D, β, β, Β¬, β, β€, β₯) satisfying the following properties is called a double Boolean algebra (dBa). For any π₯,β―π¦,β―π§β―ββ―D we require
(1a)(π₯β―ββ―π₯)β―ββ―π¦β―=β―π₯β―ββ―π¦ (1b)(π₯β―ββ―π₯)β―ββ―π¦β―=β―π₯β―ββ―π¦
(2a)π₯β―ββ―π¦β―=β―π¦β―ββ―π₯ (2b)π₯β―ββ―π¦β―=β―π¦β―ββ―π₯
(3a)Β¬(π₯β―ββ―π₯)β―=β―Β¬π₯ (3b)β(π₯β―ββ―π₯)β―=β―βπ₯
(4a)π₯β―ββ―(π₯β―ββ―π¦)β―=β―π₯β―ββ―π₯ (4b)π₯β―ββ―(π₯β―ββ―π¦)β―=β―π₯β―ββ―π₯
(5a)π₯β―ββ―(π¦β―β¨β―π§)β―=β―(π₯β―ββ―π¦)β―β¨β―(π₯β―ββ―π§) (5b)π₯β―ββ―(π¦β―β§β―π§)β―=β―(π₯β―ββ―π¦)β―β§β―(π₯β―ββ―π§)
(6a)π₯β―ββ―(π₯β―β¨β―π¦)β―=β―π₯β―ββ―π₯ (6b)π₯β―ββ―(π₯β―β§β―π¦)β―=β―π₯β―ββ―π₯
(7a)¬¬(π₯β―ββ―π¦)β―=β―π₯β―ββ―π¦ (7b)ββ(π₯β―ββ―π¦)β―=β―π₯β―ββ―π¦
(8a)π₯β―ββ―Β¬π₯β―=β―β₯ (8b)π₯β―ββ―βπ₯β―=β―β€
(9a)Β¬β€β―=β―β₯ (9b)ββ₯β―=β―β€
(10a)π₯β―ββ―(π¦β―ββ―π§)β―=β―(π₯β―ββ―π¦)β―ββ―π§ (10b)π₯β―ββ―(π¦β―ββ―π§)β―=β―(π₯β―ββ―π¦)β―ββ―π§
(11a)Β¬β₯β―=β―β€β―ββ―β€ (11b)ββ€β―=β―β₯β―ββ―β₯
(12)(π₯β―ββ―π₯)β―ββ―(π₯β―ββ―π₯)β―=β―(π₯β―ββ―π₯)β―ββ―(π₯β―ββ―π₯)
where π₯β―β¨β―π¦β―ββ―Β¬(Β¬π₯β―ββ―Β¬π¦) and π₯β―β§β―π¦β―ββ―β(βπ₯β―ββ―βπ¦).
This is a relatively long list, which might refrain potential users to engage in investigating or applying these structures. In previous work, it was shown that the axioms (1a), (1b) and (11a), (11b) can be derived from other axioms of dBa. During a conference in CΓ‘diz, the authors identified a shared interest in simplifying the axiomatization of dBas. As a result, we collaborated on developing a more streamlined, redundancy-free axiomatization.
Let DAxom be the set of all axioms of dBa and MCore be the subset of DAxom consisting of the axioms 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5b 8a, 8b and 12. Then we have the following result:
Theorem: There is a six-element non-dBa π― such that π― satisfies all the equations in MCore but does not satisfy the axioms 7a and 7b.
The above theorem suggests that we need MCore and the axioms 7a and 7b to define a dBa. We denote DCore := MCore βͺ {¬¬(x β y) = x β y, ββ(x β y) = x β y}.
Theorem: An algebra (D, β, β, Β¬, β, β€, β₯) is a dBa if and only if it satisfies DCore. Moreover DCore is a minimal set of axioms for such an algebra.
en
dc.language.iso
en
-
dc.subject
Formal Concept Analysis
en
dc.subject
double Boolean algebra
en
dc.subject
Boolean algebra
en
dc.title
Independent set of axioms of double Boolean algebras
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
Institute of Information Science, Academia Sinica, Taiwan (Province of China)
-
dc.contributor.affiliation
Bern University of Applied Sciences, Switzerland
-
dc.contributor.affiliation
Institute of Information Science, Academia Sinica, Taiwan (Province of China)
-
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
75
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publication.orgunit
E104 - Institut fΓΌr Diskrete Mathematik und Geometrie
-
tuw.author.orcid
0000-0002-8932-126X
-
tuw.author.orcid
0000-0002-9811-0747
-
tuw.author.orcid
0000-0003-0050-8085
-
tuw.author.orcid
0000-0001-6842-9637
-
tuw.event.name
AAA 107 - 107th Workshop on General Algebra
en
dc.description.sponsorshipexternal
Swiss National Science Foundation (SNSF)
-
dc.relation.grantnoexternal
IZSEZ0_233403 / 1
-
tuw.event.startdate
20-06-2025
-
tuw.event.enddate
22-06-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Bern
-
tuw.event.country
CH
-
tuw.event.institution
Bern University of Applied Sciences (BFH-W)
-
tuw.event.presenter
Behrisch, Mike
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
25
-
wb.sciencebranch.value
75
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Institute of Information Science, Academia Sinica
-
crisitem.author.dept
Bern University of Applied Sciences
-
crisitem.author.dept
E104-01 - Forschungsbereich Algebra
-
crisitem.author.dept
Institute of Information Science, Academia Sinica
-
crisitem.author.orcid
0000-0002-8932-126X
-
crisitem.author.orcid
0000-0003-0050-8085
-
crisitem.author.orcid
0000-0001-6842-9637
-
crisitem.author.parentorg
E104 - Institut fΓΌr Diskrete Mathematik und Geometrie