<div class="csl-bib-body">
<div class="csl-entry">Bao, L., Jin, E., Bronstein, M. M., Ceylan, I. I., & Lanzinger, M. P. (2025). Homomorphism Counts as Structural Encodings for Graph Learning. In <i>The Thirteenth International Conference on Learning Representations : ICLR 2025</i> (pp. 1–29). http://hdl.handle.net/20.500.12708/217250</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/217250
-
dc.description.abstract
Graph Transformers are popular neural networks that extend the well-known Transformer architecture to the graph domain. These architectures operate by applying self-attention on graph nodes and incorporating graph structure through the use of positional encodings (e.g., Laplacian positional encoding) or structural encodings (e.g., random-walk structural encoding). The quality of such encodings is critical, since they provide the necessary \emph{graph inductive biases} to condition the model on graph structure. In this work, we propose \emph{motif structural encoding} (MoSE) as a flexible and powerful structural encoding framework based on counting graph homomorphisms. Theoretically, we compare the expressive power of MoSE to random-walk structural encoding and relate both encodings to the expressive power of standard message passing neural networks. Empirically, we observe that MoSE outperforms other well-known positional and structural encodings across a range of architectures, and it achieves state-of-the-art performance on a widely studied molecular property prediction dataset.
en
dc.description.abstract
https://openreview.net/forum?id=qFw2RFJS5g
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
graph transformers
en
dc.subject
graph learning
en
dc.subject
positional encodings
en
dc.subject
deep learning
en
dc.title
Homomorphism Counts as Structural Encodings for Graph Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.description.startpage
1
-
dc.description.endpage
29
-
dc.relation.grantno
ICT22-011
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Thirteenth International Conference on Learning Representations : ICLR 2025
-
tuw.peerreviewed
true
-
tuw.project.title
Decompose and Conquer: Fast Query Processing via Decomposition
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
dc.description.numberOfPages
29
-
tuw.author.orcid
0000-0002-7601-3727
-
tuw.author.orcid
0000-0003-4118-4689
-
tuw.author.orcid
0000-0002-7601-3727
-
tuw.event.name
Thirteenth International Conference on Learning Representations
en
tuw.event.startdate
24-04-2025
-
tuw.event.enddate
28-04-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
SG
-
tuw.event.presenter
Bao, Linus
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
crisitem.author.dept
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
crisitem.author.dept
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
crisitem.author.dept
E180 - Fakultät für Informatik
-
crisitem.author.dept
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.orcid
0000-0003-4118-4689
-
crisitem.author.orcid
0000-0002-7601-3727
-
crisitem.author.parentorg
E000 - Technische Universität Wien
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds