<div class="csl-bib-body">
<div class="csl-entry">Luo, H., Sun, G., Liu, Y., Zhao, D., Niyato, D., Yu, H., & Dustdar, S. (2025). <i>A Weighted Byzantine Fault Tolerance Consensus Driven Trusted Multiple Large Language Models Network</i>. arXiv. https://doi.org/10.34726/10242</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/217904
-
dc.identifier.uri
https://doi.org/10.34726/10242
-
dc.description.abstract
Large Language Models (LLMs) have achieved remarkable success across a wide range of applications. However, individual LLMs often produce inconsistent, biased, or hallucinated outputs due to limitations in their training corpora and model architectures. Recently, collaborative frameworks such as the Multi-LLM Network (MultiLLMN) have been introduced, enabling multiple LLMs to interact and jointly respond to user queries. Nevertheless, MultiLLMN architectures raise critical concerns regarding the reliability and security of the generated content, particularly in open environments where malicious or compromised LLMs may be present. Moreover, reliance on centralized coordination undermines system efficiency and introduces single points of failure. In this paper, we propose a novel Trusted MultiLLMN framework, driven by a Weighted Byzantine Fault Tolerance (WBFT) blockchain consensus mechanism, to ensure the reliability, security, and efficiency of multi-LLM collaboration. In WBFT, voting weights are adaptively assigned to each LLM based on its response quality and trustworthiness, incentivizing reliable behavior, and reducing the impact of malicious nodes. Extensive simulations demonstrate that WBFT significantly improves both consensus security and efficiency compared to classical and modern consensus mechanisms, particularly under wireless network conditions. Furthermore, our evaluations reveal that Trusted MultiLLMN supported by WBFT can deliver higher-quality and more credible responses than both single LLMs and conventional MultiLLMNs, thereby providing a promising path toward building robust, decentralized AI collaboration networks.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Large language model (LLM)
en
dc.subject
LLM networks
en
dc.subject
blockchain consensus
en
dc.subject
trusted LLM
en
dc.subject
wireless large AI model
en
dc.title
A Weighted Byzantine Fault Tolerance Consensus Driven Trusted Multiple Large Language Models Network
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10242
-
dc.identifier.arxiv
2505.05103
-
dc.contributor.affiliation
University of Electronic Science and Technology of China, China
-
dc.contributor.affiliation
University of Electronic Science and Technology of China, China
-
dc.contributor.affiliation
Nanyang Technological University, Singapore
-
dc.contributor.affiliation
Peng Cheng Laboratory, China
-
dc.contributor.affiliation
Nanyang Technological University, Singapore
-
dc.contributor.affiliation
University of Electronic Science and Technology of China, China
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2505.05103
-
dc.identifier.libraryid
AC17603186
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0002-2448-8915
-
tuw.author.orcid
0000-0002-6198-3712
-
tuw.author.orcid
0000-0002-7442-7416
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
dc.description.sponsorshipexternal
Major Key Project of PCL
-
dc.relation.grantnoexternal
PCL2024A05
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.mimetype
application/pdf
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
University of Electronic Science and Technology of China, China
-
crisitem.author.dept
University of Electronic Science and Technology of China, China
-
crisitem.author.dept
Nanyang Technological University, Singapore
-
crisitem.author.dept
Peng Cheng Laboratory, China
-
crisitem.author.dept
Nanyang Technological University, Singapore
-
crisitem.author.dept
University of Electronic Science and Technology of China, China
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0002-6198-3712
-
crisitem.author.orcid
0000-0002-7442-7416
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering