<div class="csl-bib-body">
<div class="csl-entry">Helcig, M., & Nastic, S. (2025). FedCCL: Federated Clustered Continual Learning Framework for Privacy-focused Energy Forecasting. In <i>2025 IEEE 9th International Conference on Fog and Edge Computing (ICFEC)</i> (pp. 50–57). IEEE. https://doi.org/10.1109/ICFEC65699.2025.00012</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/217967
-
dc.description.abstract
Privacy-preserving distributed model training is crucial for modern machine learning applications, yet existing Federated Learning approaches struggle with heterogeneous data distributions and varying computational capabilities. Traditional solutions either treat all participants uniformly or require costly dynamic clustering during training, leading to reduced efficiency and delayed model specialization. We present FedCCL (Federated Clustered Continual Learning), a framework specifically designed for environments with static organizational characteristics but dynamic client availability. By combining static pretraining clustering with an adapted asynchronous FedAvg algorithm, Fed-CCL enables new clients to immediately profit from specialized models without prior exposure to their data distribution, while maintaining reduced coordination overhead and resilience to client disconnections. Our approach implements an asynchronous Federated Learning protocol with a three-tier model topology - global, cluster-specific, and local models - that efficiently manages knowledge sharing across heterogeneous participants. Evaluation using photovoltaic installations across central Europe demonstrates that FedCCL's location-based clustering achieves an energy prediction error of 3.93% (±0.21%), while maintaining data privacy and showing that the framework maintains stability for population-independent deployments, with 0.14 percentage point degradation in performance for new installations. The results demonstrate that FedCCL offers an effective framework for privacy-preserving distributed learning, maintaining high accuracy and adaptability even with dynamic participant populations.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
Internet Privatstiftung Austria
-
dc.language.iso
en
-
dc.subject
Clustered Federated Learning
en
dc.subject
Distributed Machine Learning
en
dc.subject
Edge Computing
en
dc.subject
Energy Forecasting
en
dc.subject
Federated Learning
en
dc.subject
Privacy-Preserving Computing
en
dc.subject
Renewable Energy
en
dc.subject
Smart Grid
en
dc.subject
Time Series Analysis
en
dc.title
FedCCL: Federated Clustered Continual Learning Framework for Privacy-focused Energy Forecasting
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.isbn
979-8-3315-9457-2
-
dc.relation.doi
10.1109/ICFEC65699.2025
-
dc.relation.issn
2694-3263
-
dc.description.startpage
50
-
dc.description.endpage
57
-
dc.relation.grantno
903884
-
dc.relation.grantno
101192912
-
dc.relation.grantno
7442
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2694-3255
-
tuw.booktitle
2025 IEEE 9th International Conference on Fog and Edge Computing (ICFEC)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.project.title
Rapid Recovery and Control of Urban Traffic During Accident Situations Based on Artificial Intelligence
-
tuw.project.title
NexaSphere: NexGen 3D Networks Spin Harmonies across 6G, AI, and unified TN/NTN
-
tuw.project.title
LEOTrek
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://github.com/polaris-slo-cloud/fedccl
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/ICFEC65699.2025.00012
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0009-0009-9587-9567
-
tuw.author.orcid
0000-0003-0410-6315
-
tuw.event.name
9th IEEE International Conference on Fog and Edge Computing (ICFEC 2025)
en
tuw.event.startdate
19-05-2025
-
tuw.event.enddate
22-05-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Tromsø
-
tuw.event.country
NO
-
tuw.event.presenter
Helcig, Michael
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0009-0009-9587-9567
-
crisitem.author.orcid
0000-0003-0410-6315
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH