<div class="csl-bib-body">
<div class="csl-entry">Lachi, V., Moallemy-Oureh, A., Roth, A., & Welke, P. (2025). Expressive Pooling for Graph Neural Networks. <i>Transactions on Machine Learning Research</i>. http://hdl.handle.net/20.500.12708/218111</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218111
-
dc.description
https://openreview.net/forum?id=xGADInGWMt
-
dc.description.abstract
Considerable efforts have been dedicated to exploring methods that enhance the expressiveness of graph neural networks. Current endeavors primarily focus on modifying the message-passing process to overcome limitations imposed by the Weisfeiler-Leman test, often at the expense of increasing computational cost. In practical applications, message-passing layers are interleaved with pooling layers for graph-level tasks, enabling the learning of increasingly abstract and coarser representations of input graphs. In this work, we formally prove two directions that allow pooling methods to increase the expressive power of a graph neural network while keeping the message-passing method unchanged. We systemically assign eight frequently used pooling operators to our theoretical conditions for increasing expressivity and introduce a novel pooling method XP, short for eXpressive Pooling, as an additional simple method that satisfies our theoretical conditions. Experiments conducted on the Brec dataset confirm that those pooling methods that satisfy our conditions empirically increase the expressivity of graph neural networks.
en
dc.language.iso
en
-
dc.publisher
Transactions on Machine Learning Research
-
dc.relation.ispartof
Transactions on Machine Learning Research
-
dc.subject
Machine Learning
en
dc.subject
Graph Neural Networks
en
dc.subject
Weisfeiler-Leman (WL) Test
en
dc.subject
Hierarchical Graph Pooling
en
dc.subject
Theory and Expressivity in GNNs
en
dc.title
Expressive Pooling for Graph Neural Networks
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Kassel, Germany
-
dc.contributor.affiliation
TU Dortmund University, Germany
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Transactions on Machine Learning Research
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.eissn
2835-8856
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0002-6947-7304
-
tuw.author.orcid
0000-0001-7912-0969
-
tuw.author.orcid
0000-0002-2123-3781
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
crisitem.author.dept
University of Kassel
-
crisitem.author.dept
TU Dortmund University
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0002-6947-7304
-
crisitem.author.orcid
0000-0001-7912-0969
-
crisitem.author.orcid
0000-0002-2123-3781
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering