<div class="csl-bib-body">
<div class="csl-entry">Vana, L., Visconti, E., Nenzi, L., Cadonna, A., & Kastner, G. (2025). Bayesian Machine Learning Meets Formal Methods: An Application to Spatio-Temporal Data. <i>ACM Transactions on Probabilistic Machine Learning</i>, <i>1</i>(2), 1–29. https://doi.org/10.1145/3708479</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218218
-
dc.description.abstract
We propose an interdisciplinary framework that combines Bayesian predictive inference, a well-established tool in machine learning, with formal methods, rooted in the computer science community. Bayesian predictive inference allows for coherently incorporating uncertainty about unknown quantities by making use of methods or models that produce predictive distributions, which in turn inform decision problems. By formalizing these decision problems into properties with the help of spatio-temporal logic, we can formulate and predict how likely such properties are to be satisfied in the future at a certain location. Moreover, we can leverage our methodology to evaluate and compare models directly on their ability to predict the satisfaction of application-driven properties. The approach is illustrated in an urban mobility application, where the crowdedness in the center of Milan is proxied by aggregated mobile phone traffic data. We specify several desirable spatio-temporal properties related to city crowdedness such as a fault-tolerant network or the reachability of hospitals. After verifying these properties on draws from the posterior predictive distributions, we compare several spatio-temporal Bayesian models based on their overall and property-based predictive performance.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
Association for Computing Machinery
-
dc.relation.ispartof
ACM Transactions on Probabilistic Machine Learning
-
dc.subject
Bayesian predictive inference
en
dc.subject
Spatio-temporal properties
en
dc.title
Bayesian Machine Learning Meets Formal Methods: An Application to Spatio-Temporal Data
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Trieste, Italy
-
dc.contributor.affiliation
University of Klagenfurt, Austria
-
dc.contributor.affiliation
University of Klagenfurt, Austria
-
dc.description.startpage
1
-
dc.description.endpage
29
-
dc.relation.grantno
ZK 35-G
-
dc.relation.grantno
ZK 35-G
-
dc.type.category
Original Research Article
-
tuw.container.volume
1
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
High-dimensional statistical learning: New methods to advance economic and sustainability policies
-
tuw.project.title
Hochdimensionales statistisches Lernen: Neue Methoden zur Förderung der Wirtschafts- und Nachhaltigkeitspolitik
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
ACM Transactions on Probabilistic Machine Learning