<div class="csl-bib-body">
<div class="csl-entry">Chakrabarti, A., Ash, B., Mazets, I., Chen, X., & Kurizki, G. (2025). Quantum transport protected by acceleration from nonadiabaticity and dissipation. <i>Nature Communications</i>, <i>16</i>(1), 7769. https://doi.org/10.1038/s41467-025-62786-8</div>
</div>
-
dc.identifier.issn
2041-1723
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218334
-
dc.description.abstract
We put forth a hitherto unexplored control strategy that enables high-fidelity fast transport of an unstable quantum wavepacket even in the presence of bath-induced dissipation. The wavepacket, which is confined within any shallow (anharmonic) potential trap is steered in acceleration, so as to maximize the transfer fidelity. This strategy can generally optimize any non-Markovian bath-dressed continuous-variable system dynamics. It can simultaneously cope with wavepacket leakage via non-adiabatic transitions and bath-induced dissipation in an optimal fashion. It can outperform methods based on counterdiabatic fields (shortcuts to adiabaticity) particularly for fast non-adiabatic transport. Transport fidelity is maximized even for trajectories exceeding the speed of bath-excitation propagation, e.g., for supersonic transfer through phonon baths. This general approach is illustrated for optimized transfer of impurities in Bose-Einstein condensates. It is applicable to both dissipative and non-dissipative transfer of trapped atoms and ions and molecular reaction products.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
NATURE PORTFOLIO
-
dc.relation.ispartof
Nature Communications
-
dc.subject
quantum transport
en
dc.subject
Fidelity
en
dc.subject
non-adiabatic effects
en
dc.subject
Non-Markovianity
en
dc.subject
Dissipation
en
dc.title
Quantum transport protected by acceleration from nonadiabaticity and dissipation
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.pmid
40835830
-
dc.contributor.affiliation
University of Michigan, United States of America (the)
-
dc.description.startpage
7769
-
dc.relation.grantno
101097858
-
dc.type.category
Original Research Article
-
tuw.container.volume
16
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Emergence in Quantum Physics
-
tuw.researchTopic.id
Q3
-
tuw.researchTopic.id
Q5
-
tuw.researchTopic.name
Quantum Modeling and Simulation
-
tuw.researchTopic.name
Design and Engineering of Quantum Systems
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Nature Communications
-
tuw.publication.orgunit
E141-02 - Forschungsbereich Atom Physics and Quantum Optics
-
tuw.publisher.doi
10.1038/s41467-025-62786-8
-
dc.date.onlinefirst
2025
-
dc.identifier.eissn
2041-1723
-
tuw.author.orcid
0009-0008-7423-5810
-
tuw.author.orcid
0000-0002-3769-8313
-
tuw.author.orcid
0000-0003-4221-4288
-
tuw.author.orcid
0009-0002-5131-0351
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
100
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
101097858
-
crisitem.author.dept
University of Michigan
-
crisitem.author.dept
E141-02 - Forschungsbereich Atom Physics and Quantum Optics