<div class="csl-bib-body">
<div class="csl-entry">Donta, P. K., Zhang, Q., & Dustdar, S. (2025). <i>Performance Measurements in the AI-Centric Computing Continuum Systems</i>. arXiv. https://doi.org/10.34726/10419</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218533
-
dc.identifier.uri
https://doi.org/10.34726/10419
-
dc.description.abstract
Over the Eight decades, computing paradigms have shifted from large, centralized systems to compact, distributed architectures, leading to the rise of the Distributed Computing Continuum (DCC). In this model, multiple layers such as cloud, edge, Internet of Things (IoT), and mobile platforms work together to support a wide range of applications. Recently, the emergence of Generative AI and large language models has further intensified the demand for computational resources across this continuum. Although traditional performance metrics have provided a solid foundation, they need to be revisited and expanded to keep pace with changing computational demands and application requirements. Accurate performance measurements benefit both system designers and users by supporting improvements in efficiency and promoting alignment with system goals. In this context, we review commonly used metrics in DCC and IoT environments. We also discuss emerging performance dimensions that address evolving computing needs, such as sustainability, energy efficiency, and system observability. We also outline criteria and considerations for selecting appropriate metrics, aiming to inspire future research and development in this critical area.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Internet of things
en
dc.subject
Performance Measurements
en
dc.subject
Distributed Computing Continuum
en
dc.subject
Artificial Intelligence
en
dc.subject
Quality of Service
en
dc.title
Performance Measurements in the AI-Centric Computing Continuum Systems
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10419
-
dc.identifier.arxiv
2506.22884
-
dc.contributor.affiliation
Stockholm University, Sweden
-
dc.contributor.affiliation
Peking University, China
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2506.22884
-
dc.identifier.libraryid
AC17620589
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0002-8233-6071
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
preprint
-
item.openaccessfulltext
Open Access
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.mimetype
application/pdf
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0002-8233-6071
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering