<div class="csl-bib-body">
<div class="csl-entry">Helcig, M. A., & Nastic, S. (2025). <i>FedCCL: Federated Clustered Continual Learning Framework for Privacy-focused Energy Forecasting</i>. arXiv. https://doi.org/10.34726/10421</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218535
-
dc.identifier.uri
https://doi.org/10.34726/10421
-
dc.description.abstract
Privacy-preserving distributed model training is crucial for modern machine learning applications, yet existing Federated Learning approaches struggle with heterogeneous data distributions and varying computational capabilities. Traditional solutions either treat all participants uniformly or require costly dynamic clustering during training, leading to reduced efficiency and delayed model specialization. We present FedCCL (Federated Clustered Continual Learning), a framework specifically designed for environments with static organizational characteristics but dynamic client availability. By combining static pre-training clustering with an adapted asynchronous FedAvg algorithm, FedCCL enables new clients to immediately profit from specialized models without prior exposure to their data distribution, while maintaining reduced coordination overhead and resilience to client disconnections. Our approach implements an asynchronous Federated Learning protocol with a three-tier model topology - global, cluster-specific, and local models - that efficiently manages knowledge sharing across heterogeneous participants. Evaluation using photovoltaic installations across central Europe demonstrates that FedCCL's location-based clustering achieves an energy prediction error of 3.93% (+-0.21%), while maintaining data privacy and showing that the framework maintains stability for population-independent deployments, with 0.14 percentage point degradation in performance for new installations. The results demonstrate that FedCCL offers an effective framework for privacy-preserving distributed learning, maintaining high accuracy and adaptability even with dynamic participant populations.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
Internet Privatstiftung Austria
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Federated Learning
en
dc.subject
Clustered Federated Learning
en
dc.subject
Energy Forecasting
en
dc.subject
Privacy-Preserving Computing
en
dc.subject
Distributed Machine Learning
en
dc.subject
Time Series Analysis
en
dc.subject
Smart Grid
en
dc.subject
Renewable Energy
en
dc.subject
Edge Computing
en
dc.title
FedCCL: Federated Clustered Continual Learning Framework for Privacy-focused Energy Forecasting
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/10421
-
dc.identifier.arxiv
2504.20282
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.grantno
903884
-
dc.relation.grantno
101192912
-
dc.relation.grantno
7442
-
tuw.project.title
Rapid Recovery and Control of Urban Traffic During Accident Situations Based on Artificial Intelligence
-
tuw.project.title
NexaSphere: NexGen 3D Networks Spin Harmonies across 6G, AI, and unified TN/NTN
-
tuw.project.title
LEOTrek
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://github.com/polaris-slo-cloud/fedccl
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2504.20282
-
dc.identifier.libraryid
AC17620582
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0009-0009-9587-9567
-
tuw.author.orcid
0000-0003-0410-6315
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.publisher.server
arXiv
-
dc.relation.ispreviousversionof
10.1109/ICFEC65699.2025.00012
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
preprint
-
item.openaccessfulltext
Open Access
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.mimetype
application/pdf
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
Internet Privatstiftung Austria
-
crisitem.project.grantno
903884
-
crisitem.project.grantno
101192912
-
crisitem.project.grantno
7442
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0003-0410-6315
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering