<div class="csl-bib-body">
<div class="csl-entry">Holzschuh, J., Mix, M., Freitag, M. T., Hölscher, T., Braune, A., Kötzerke, J., Vrachimis, A., Doolan, P., Ilhan, H., Marinescu, I. M., Spohn, S. K. B., Fechter, T., Kuhn, D., Gratzke, C., Grosu, R., Grosu, A.-L., & Zamboglou, C. (2024). The impact of multicentric datasets for the automated tumor delineation in primary prostate cancer using convolutional neural networks on <sup>1</sup><sup>8</sup>F-PSMA-1007 PET. <i>Radiation Oncology</i>, <i>19</i>(1), Article 106. https://doi.org/10.1186/s13014-024-02491-w</div>
</div>
-
dc.identifier.issn
1748-717X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218538
-
dc.description.abstract
Convolutional Neural Networks (CNNs) have emerged as transformative tools in the field of radiation oncology, significantly advancing the precision of contouring practices. However, the adaptability of these algorithms across diverse scanners, institutions, and imaging protocols remains a considerable obstacle. This study aims to investigate the effects of incorporating institution-specific datasets into the training regimen of CNNs to assess their generalization ability in real-world clinical environments. Focusing on a data-centric analysis, the influence of varying multi- and single center training approaches on algorithm performance is conducted.
en
dc.language.iso
en
-
dc.publisher
BMC
-
dc.relation.ispartof
Radiation Oncology
-
dc.subject
Humans
en
dc.subject
Male
en
dc.subject
Algorithms
en
dc.subject
Datasets as Topic
en
dc.subject
Fluorine Radioisotopes
en
dc.subject
Image Processing, Computer-Assisted
en
dc.subject
Niacinamide
en
dc.subject
Oligopeptides
en
dc.subject
Positron-Emission Tomography
en
dc.subject
Radiopharmaceuticals
en
dc.subject
Neural Networks, Computer
en
dc.subject
Prostatic Neoplasms
en
dc.title
The impact of multicentric datasets for the automated tumor delineation in primary prostate cancer using convolutional neural networks on ¹⁸F-PSMA-1007 PET