<div class="csl-bib-body">
<div class="csl-entry">Li, P., Yang, Y., Grosu, R., Wang, G., Li, R., Wu, Y., & Zeng, H. (2022). Driver Distraction Detection Using Octave-Like Convolutional Neural Network. <i>IEEE Transactions on Intelligent Transportation Systems</i>, <i>23</i>(7), 8823–8833. https://doi.org/10.1109/TITS.2021.3086411</div>
</div>
-
dc.identifier.issn
1524-9050
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218542
-
dc.description.abstract
This study proposes a lightweight convolutional neural network with an octave-like convolution mixed block, called OLCMNet, for detecting driver distraction under a limited computational budget. The OLCM block uses point-wise convolution (PC) to expand feature maps into two sets of branches. In the low-frequency branches, we perform average pooling, depth-wise convolution (DC), and upsampling to obtain a low-resolution low-frequency feature map, reducing spatial redundancy and connection density. In the high-frequency branches, the expanded feature map with the original resolution is fed to the DC operator, gaining an apposite receptive field to capture fine details. The feature concatenation of the low-frequency and high-frequency branches is encoded sequentially by a squeeze-and-excitation (SE) module and PC operator, realizing feature global information fusion. Introducing another SE module at the last stage, the OLCMNet facilitates further sensitive information exchange between layers. In addition, with an augmented reality head-up display (ARHUD) platform, we create a Lilong Distracted Driving Behavior (LDDB) Dataset through a series of on-road experiments. Such a dataset contains 14808 videos collected from an infrared camera, covering six driving behaviors of 2468 participants. We manually annotate these videos at five frames per second, obtaining a total of 267378 images. Compared with the existing methods, the embedded hardware platform experiments indicate that OLCMNet hits acceptable trade-offs, namely, 89.53% accuracy for StateFarm Dataset and 95.98% accuracy LDDB Dataset when the latency is 32.8 ± 4.6ms.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Intelligent Transportation Systems
-
dc.subject
Driver Distraction
en
dc.subject
convolution neural networks
en
dc.subject
lightweight neural network
en
dc.subject
Infrared Imaging
en
dc.title
Driver Distraction Detection Using Octave-Like Convolutional Neural Network
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Chongqing University of Posts and Telecommunications, China
-
dc.contributor.affiliation
Chongqing University of Posts and Telecommunications, China
-
dc.contributor.affiliation
Chongqing University of Posts and Telecommunications, China
-
dc.contributor.affiliation
Chongqing Lilong Automobile Research Institute, Chongqing, China
-
dc.contributor.affiliation
Chongqing Chang’an Automobile Company Ltd., Chongqing, China
-
dc.description.startpage
8823
-
dc.description.endpage
8833
-
dc.type.category
Original Research Article
-
tuw.container.volume
23
-
tuw.container.issue
7
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Intelligent Transportation Systems
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/TITS.2021.3086411
-
dc.date.onlinefirst
2021-06-16
-
dc.identifier.eissn
1558-0016
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0003-0615-7781
-
tuw.author.orcid
0000-0002-3874-6735
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.author.orcid
0000-0003-0251-6257
-
tuw.author.orcid
0000-0003-3871-188X
-
wb.sci
true
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Chongqing University of Posts and Telecommunications
-
crisitem.author.dept
Chongqing University of Posts and Telecommunications
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Chongqing University of Posts and Telecommunications
-
crisitem.author.dept
Chongqing Lilong Automobile Research Institute, Chongqing, China
-
crisitem.author.dept
Chongqing Chang’an Automobile Company Ltd., Chongqing, China