<div class="csl-bib-body">
<div class="csl-entry">Mahyar, H., Tulala, P., Ghalebi, E., & Grosu, R. (2022). DeepWafer: A Generative Wafermap Model with Deep Adversarial Networks. In <i>2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)</i> (pp. 126–131). https://doi.org/10.1109/ICMLA55696.2022.00025</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218547
-
dc.description.abstract
A certain amount of process deviations characterizes semiconductor manufacturing processes. Automated detection of these production issues followed by an automated root cause analysis has the potential to increase the effectiveness of semiconductor production. Manufacturing defects exhibit typical patterns in measured wafer test data, e.g., rings, spots, repetitive textures, or scratches. Recognizing these patterns is an essential step for finding the root cause of production issues. This paper demonstrates that combining Information Maximizing Generative Adversarial Network (InfoGAN) and Wasserstein GAN (WGAN) with a new loss function is suitable for extracting the most characteristic features from extensive real-world sensory wafer test data, which in various aspects outperforms traditional unsupervised techniques. These features are then used in subsequent clustering tasks to group wafers into clusters according to their exhibit patterns. The primary outcome of this work is a statistical generative model for recognizing spatial wafermaps patterns using deep adversarial neural networks. We experimentally evaluate the performance of the proposed approach over a real dataset.
en
dc.language.iso
en
-
dc.subject
Deep Adversarial Networks
en
dc.subject
Generative Models
en
dc.subject
Semiconductor Wafermaps
en
dc.subject
Wafer Defect Patterns
en
dc.title
DeepWafer: A Generative Wafermap Model with Deep Adversarial Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9781665462839
-
dc.description.startpage
126
-
dc.description.endpage
131
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/ICMLA55696.2022.00025
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
21st IEEE International Conference on Machine Learning and Applications (ICMLA 2022)
en
tuw.event.startdate
12-12-2022
-
tuw.event.enddate
14-12-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Nassau
-
tuw.event.country
BS
-
tuw.event.institution
IEEE
-
tuw.event.presenter
Mahyar, Hamidreza
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems