<div class="csl-bib-body">
<div class="csl-entry">Pontiggia, F., Macák, F., Andriushchenko, R., Michele Chiari, & Češka, M. (2025). Decentralized Planning Using Probabilistic Hyperproperties. In S. Das, A. Nowé, & Y. Vorobeychik (Eds.), <i>AAMAS ’25 : Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems</i> (pp. 1688–1697). International Foundation for Autonomous Agents and Multiagent Systems. https://doi.org/10.34726/10423</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218549
-
dc.identifier.uri
https://doi.org/10.34726/10423
-
dc.description
https://dl.acm.org/doi/10.5555/3709347.3743804
-
dc.description.abstract
Multi-agent planning under stochastic dynamics is usually formalised using decentralized (partially observable) Markov decision processes (MDPs) and reachability or expected reward specifications. In this paper, we propose a different approach: we use an MDP describing how a single agent operates in an environment and probabilistic hyperproperties to capture desired temporal objectives for a set of decentralized agents operating in the environment. We extend existing approaches for model checking probabilistic hyperproperties to handle temporal formulae relating paths of different agents, thus requiring the self-composition between multiple MDPs. Using several case studies, we demonstrate that our approach provides a flexible and expressive framework to broaden the specification capabilities with respect to existing planning techniques. Additionally, we establish a close connection between a subclass of probabilistic hyperproperties and planning for a particular type of Dec-MDPs, for both of which we show undecidability. This lays the ground for the use of existing decentralized planning tools in the field of probabilistic hyperproperty verification.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
-
dc.subject
Abstraction refinement
en
dc.subject
Decentralized planning
en
dc.subject
Markov Decision Processes
en
dc.subject
Probabilistic Hyperproperties
en
dc.subject
Self-composition
en
dc.title
Decentralized Planning Using Probabilistic Hyperproperties
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.identifier.doi
10.34726/10423
-
dc.contributor.affiliation
Brno University of Technology, Czechia
-
dc.contributor.affiliation
Brno University of Technology, Czechia
-
dc.contributor.affiliation
Brno University of Technology, Czechia
-
dc.contributor.editoraffiliation
Virginia Tech, United States of America (the)
-
dc.contributor.editoraffiliation
Vrije Universiteit Brussel, Belgium
-
dc.contributor.editoraffiliation
Washington University in St. Louis, United States of America (the)