<div class="csl-bib-body">
<div class="csl-entry">Wallner, F., Aichernig, B., Lorber, F., & Tappler, M. (2025). Mutating Skeletons: Learning Timed Automata via Domain Knowledge. In <i>2025 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)</i> (pp. 67–77). https://doi.org/10.1109/ICSTW64639.2025.10962513</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218558
-
dc.description.abstract
Formal verification techniques, such as model checking, can provide valuable insights and guarantees for (safety-critical) devices and their possible behavior. However, these guarantees only hold true as long as the model correctly reflects the system. Automata learning provides a huge advantage there as it enables not only the automatic creation of the needed models but also ensures their correct reflection of the system behavior. However, and this holds especially true for real-time systems, model learning techniques can become very time consuming. To combat this, we show how to integrate given domain knowledge into an existing approach based on genetic programming to speed up the learning process. In particular, we show how the genetic programming approach can take a (possibly abstracted, incomplete or incorrect) untimed skeleton of an automaton, which can often be obtained very cheaply, and augment it with timing behavior to form timed automata in a fast and efficient manner. We demonstrate the approach on several examples of varying sizes.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
domain knowledge
en
dc.subject
genetic programming
en
dc.subject
model-learning
en
dc.subject
timed automata
en
dc.title
Mutating Skeletons: Learning Timed Automata via Domain Knowledge
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.contributor.affiliation
Silicon Austria Labs (Austria), Austria
-
dc.relation.isbn
9798331534677
-
dc.relation.issn
2159-4848
-
dc.description.startpage
67
-
dc.description.endpage
77
-
dc.relation.grantno
ICT22-023
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2025 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)
-
tuw.peerreviewed
true
-
tuw.project.title
Training and Guiding AI Agents with Ethical Rules
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/ICSTW64639.2025.10962513
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0009-0004-8129-9928
-
tuw.author.orcid
0000-0002-3484-5584
-
tuw.author.orcid
0009-0006-2387-2778
-
tuw.event.name
IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW 2025)
en
tuw.event.startdate
31-03-2025
-
tuw.event.enddate
04-04-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Naples
-
tuw.event.country
IT
-
tuw.event.presenter
Wallner, Felix
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
crisitem.project.grantno
ICT22-023
-
crisitem.author.dept
Graz University of Technology, Austria
-
crisitem.author.dept
Graz University of Technology, Austria
-
crisitem.author.dept
Silicon Austria Labs (Austria), Austria
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems