<div class="csl-bib-body">
<div class="csl-entry">Babaiee, Z., Mohseni Kiasari, P., Rus, D., & Grosu, R. (2025). The Master Key Filters Hypothesis: Deep Filters Are General. In T. Walsh, J. Shah, & Z. Kolter (Eds.), <i>Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence</i> (pp. 1809–1816). AAAI Press. https://doi.org/10.1609/aaai.v39i2.32175</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218764
-
dc.description.abstract
This paper challenges the prevailing view that convolutional neural network (CNN) filters become increasingly specialized in deeper layers. Motivated by recent observations of clusterable repeating patterns in depthwise separable CNNs (DS-CNNs) trained on ImageNet, we extend this investigation across various domains and datasets. Our analysis of DS-CNNs reveals that deep filters maintain generality, contradicting the expected transition to class-specific filters. We demonstrate the generalizability of these filters through transfer learning experiments, showing that frozen filters from models trained on different datasets perform well and can be further improved when sourced from larger datasets. Our findings indicate that spatial features learned by depthwise separable convolutions remain generic across all layers, domains, and architectures. This research provides new insights into the nature of generalization in neural networks, particularly in DS-CNNs, and has significant implications for transfer learning and model design.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
TTTech Auto AG; B & C Privatstiftung
-
dc.language.iso
en
-
dc.subject
Convolutional Neural Networks
en
dc.subject
Filters
en
dc.subject
Deep Machine Learning
en
dc.title
The Master Key Filters Hypothesis: Deep Filters Are General
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-57735-897-8
-
dc.relation.issn
2159-5399
-
dc.description.startpage
1809
-
dc.description.endpage
1816
-
dc.relation.grantno
I 6605-B
-
dc.relation.grantno
nicht bekannt
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2374-3468
-
tuw.booktitle
Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence
-
tuw.container.volume
39 (2)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington DC
-
tuw.project.title
Multimodale Werkzeuge der künstlichen Intelligenz zur Optimierung der Strahlentherapie bei Patienten mit Glioblastom
-
tuw.project.title
Trustworthy Autonomous Cyber-Physical Systems
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1609/aaai.v39i2.32175
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-8219-005X
-
tuw.author.orcid
0000-0001-5473-3566
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.editor.orcid
0000-0003-2998-8668
-
tuw.editor.orcid
0009-0004-5006-1685
-
tuw.editor.orcid
0000-0002-8106-5759
-
tuw.event.name
39th Annual AAAI Conference on Artificial Intelligence 2025
en
tuw.event.startdate
25-02-2025
-
tuw.event.enddate
04-03-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Philadelphia
-
tuw.event.country
US
-
tuw.event.presenter
Rus, Daniela
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
B & C Privatstiftung
-
crisitem.project.grantno
I 6605-B
-
crisitem.project.grantno
nicht bekannt
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems