<div class="csl-bib-body">
<div class="csl-entry">Gruenbacher, S. A., Lechner, M., Hasani, R., Rus, D., Henzinger, T. A., Smolka, S. A., & Grosu, R. (2022). GoTube: Scalable Statistical Verification of Continuous-Depth Models. In <i>Proceedings of the 36th AAAI Conference on Artificial Intelligence</i> (pp. 6755–6764). AAAI Press. https://doi.org/10.1609/aaai.v36i6.20631</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218766
-
dc.description.abstract
We introduce a new statistical verification algorithm that formally quantifies the behavioral robustness of any time-continuous process formulated as a continuous-depth model. Our algorithm solves a set of global optimization (Go) problems over a given time horizon to construct a tight enclosure (Tube) of the set of all process executions starting from a ball of initial states. We call our algorithm GoTube. Through its construction, GoTube ensures that the bounding tube is conservative up to a desired probability and up to a desired tightness. GoTube is implemented in JAX and optimized to scale to complex continuous-depth neural network models. Compared to advanced reachability analysis tools for time-continuous neural networks, GoTube does not accumulate overapproximation errors between time steps and avoids the infamous wrapping effect inherent in symbolic techniques. We show that GoTube substantially outperforms state-of-the-art verification tools in terms of the size of the initial ball, speed, time-horizon, task completion, and scalability on a large set of experiments. GoTube is stable and sets the state-of-the-art in terms of its ability to scale to time horizons well beyond what has been previously possible.
en
dc.language.iso
en
-
dc.relation.ispartofseries
AAAI Conference on Artificial Intelligence
-
dc.subject
Rechability Analysis
en
dc.subject
Continuous-Depth Models
en
dc.subject
Verification of Hybrid Systems
-
dc.title
GoTube: Scalable Statistical Verification of Continuous-Depth Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
Institute of Science and Technology Austria, Austria
-
dc.contributor.affiliation
Institute of Science and Technology Austria, Austria
-
dc.relation.isbn
978-1-57735-876-3
-
dc.description.startpage
6755
-
dc.description.endpage
6764
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 36th AAAI Conference on Artificial Intelligence
-
tuw.container.volume
36
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
AAAI Conference on Artificial Intelligence
-
tuw.relation.publisher
AAAI Press
-
tuw.book.chapter
6
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1609/aaai.v36i6.20631
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0002-9889-5222
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
36th AAAI Conference on Artificial Intelligence (AAAI 2022)
en
tuw.event.startdate
22-02-2022
-
tuw.event.enddate
01-03-2022
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.presenter
Gruenbacher, Sophie A.
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Massachusetts Institute of Technology
-
crisitem.author.dept
Institute of Science and Technology Austria
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems