<div class="csl-bib-body">
<div class="csl-entry">Phan, D. T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S. A., & Stoller, S. D. (2020). Neural Simplex Architecture. In <i>NASA Formal Methods : 12th International Symposium, NFM 2020, Moffett Field, CA, USA, May 11–15, 2020, Proceedings</i> (pp. 97–114). https://doi.org/10.1007/978-3-030-55754-6_6</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218771
-
dc.description.abstract
We present the Neural Simplex Architecture (NSA), a new approach to runtime assurance that provides safety guarantees for neural controllers (obtained e.g. using reinforcement learning) of autonomous and other complex systems without unduly sacrificing performance. NSA is inspired by the Simplex control architecture of Sha et al., but with some significant differences. In the traditional approach, the advanced controller (AC) is treated as a black box; when the decision module switches control to the baseline controller (BC), the BC remains in control forever. There is relatively little work on switching control back to the AC, and there are no techniques for correcting the AC’s behavior after it generates a potentially unsafe control input that causes a failover to the BC. Our NSA addresses both of these limitations. NSA not only provides safety assurances in the presence of a possibly unsafe neural controller, but can also improve the safety of such a controller in an online setting via retraining, without overly degrading its performance. To demonstrate NSA’s benefits, we have conducted several significant case studies in the continuous control domain. These include a target-seeking ground rover navigating an obstacle field, and a neural controller for an artificial pancreas system.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Online retraining
en
dc.subject
Reverse switching
en
dc.subject
Runtime assurance
en
dc.subject
Safe reinforcement learning
en
dc.subject
Simplex architecture
en
dc.title
Neural Simplex Architecture
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Stony Brook University, United States of America (the)
-
dc.contributor.affiliation
Stony Brook University, United States of America (the)
-
dc.relation.isbn
978-3-030-55754-6
-
dc.description.startpage
97
-
dc.description.endpage
114
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
NASA Formal Methods : 12th International Symposium, NFM 2020, Moffett Field, CA, USA, May 11–15, 2020, Proceedings
-
tuw.container.volume
12229
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1007/978-3-030-55754-6_6
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
NASA Formal Methods 2020
en
tuw.event.startdate
11-05-2020
-
tuw.event.enddate
15-05-2020
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.institution
NASA JPL
-
tuw.event.presenter
Phan, Dung T.
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Stony Brook University, United States of America (the)
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Stony Brook University, United States of America (the)