<div class="csl-bib-body">
<div class="csl-entry">Roy, S., Mehmood, U., Grosu, R., Smolka, S. A., Stoller, S. D., & Tiwari, A. (2020). Learning distributed controllers for V-formation. In <i>2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)</i> (pp. 119–128). IEEE. https://doi.org/10.1109/ACSOS49614.2020.00033</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218772
-
dc.description.abstract
We show how a high-performing, fully distributed and symmetric neural V-formation controller can be synthesized from a Centralized MPC (Model Predictive Control) controller using Deep Learning. This result is significant as we also establish that under very reasonable conditions, it is impossible to achieve V-formation using a deterministic, distributed, and symmetric controller. The learning process we use for the neural V-formation controller is significantly enhanced by CEGkR, a CounterexampleGuided k-fold Retraining technique we introduce, which extends prior work in this direction in important ways. Our experimental results show that our neural V-formation controller generalizes to a significantly larger number of agents than for which it was trained (from 7 to 15), and exhibits substantial speedup over the MPC-based controller. We use a form of statistical model checking to compute confidence intervals for our neural Vformation controller's convergence rate and time to convergence.
en
dc.language.iso
en
-
dc.subject
Distributed Neural Controller
en
dc.subject
Model Predictive Control
en
dc.subject
Supervised Learning.
en
dc.subject
V-Formation
en
dc.title
Learning distributed controllers for V-formation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Stony Brook University, United States of America (the)
-
dc.contributor.affiliation
Microsoft Research, San Francisco, California, United States of America
-
dc.relation.isbn
9781728172774
-
dc.description.startpage
119
-
dc.description.endpage
128
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/ACSOS49614.2020.00033
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0001-5715-2142
-
tuw.event.name
IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS 2020)
en
tuw.event.startdate
17-08-2020
-
tuw.event.enddate
21-08-2025
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Virtual
-
tuw.event.country
unknown
-
tuw.event.presenter
Roy, Shouvik
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Stony Brook University, United States of America (the)
-
crisitem.author.dept
Microsoft Research, San Francisco, California, United States of America