<div class="csl-bib-body">
<div class="csl-entry">Rieder, A. (2025). A P-Version of Convolution Quadrature in Wave Propagation. <i>SIAM Journal on Numerical Analysis</i>, <i>63</i>(4), 1729–1756. https://doi.org/10.1137/24M1642524</div>
</div>
-
dc.identifier.issn
0036-1429
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/218917
-
dc.description.abstract
We consider a novel way of discretizing wave scattering problems using the general formalism of convolution quadrature, but instead of reducing the time step size (h-method), we achieve accuracy by increasing the order of the method (p-method). We base this method on discontinuous Galerkin time stepping and use the Z-transform. We show that for a certain class of incident waves, the resulting schemes observe a (root)-exponential convergence rate with respect to the number of boundary integral operators that need to be applied. Numerical experiments confirm the finding.
en
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Numerical Analysis
-
dc.subject
boundary element method
en
dc.subject
convolution quadrature
en
dc.subject
scattering
en
dc.subject
spectral convergence
en
dc.subject
wave equation
en
dc.title
A P-Version of Convolution Quadrature in Wave Propagation