<div class="csl-bib-body">
<div class="csl-entry">Biswas, M., & Jüngel, A. (2025). Global Martingale Solutions to a Segregation Cross-Diffusion System with Stochastic Forcing. In <i>Modeling, Analysis and Simulations of Multiscale Transport Phenomena</i> (pp. 1–23). https://doi.org/10.1007/978-981-96-3098-1_1</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219210
-
dc.description.abstract
The existence of a global martingale solution to a cross-diffusion system with multiplicative Wiener noise in a bounded domain with no-flux boundary conditions is shown. The model describes the dynamics of population densities of different species due to segregation cross-diffusion effects. The diffusion matrix is generally neither symmetric nor positive semidefinite. This difficulty is overcome by exploiting the Rao entropy structure. The existence proof uses a stochastic Galerkin method, uniform estimates from the Rao entropy inequality, and the Skorokhod–Jakubowski theorem. Furthermore, an exponential equilibration result is proved for sufficiently small Lipschitz constants of the noise by using the relative Rao entropy. Numerical tests illustrate the behavior of solutions in one space dimension for two and three population species.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Springer Proceedings in Mathematics & Statistics
-
dc.subject
Cross-diffusion
en
dc.subject
Large-time behavior of solutions
en
dc.subject
Martingale solutions
en
dc.subject
Population dynamics
en
dc.subject
Tightness of laws
en
dc.title
Global Martingale Solutions to a Segregation Cross-Diffusion System with Stochastic Forcing
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Indian Institute of Technology Kanpur, India
-
dc.relation.isbn
978-981-96-3098-1
-
dc.description.startpage
1
-
dc.description.endpage
23
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Modeling, Analysis and Simulations of Multiscale Transport Phenomena