<div class="csl-bib-body">
<div class="csl-entry">Etikan, M. K., Jelagin, D., Partl, M. N., & Olsson, E. (2025). A Numerical Study of the Effect of Aggregate Fracture on the Unbound Granular Materials Response under Triaxial Loading. In L. Eberhardsteiner, B. Hofko, & R. Blab (Eds.), <i>Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria</i> (pp. 492–495). TU Wien, E230-03 Road Engineering. https://doi.org/10.34726/10780</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219289
-
dc.identifier.uri
https://doi.org/10.34726/10780
-
dc.description.abstract
The performance of unbound granular materials (UGMs) made from crushed rock plays a critical role in the service life of roads. While experimental evidence indicates that aggregate crushing and abrasion significantly affect UGM stiffness and permanent deformation, the precise relationship between aggregate strength and UGM performance remains unclear. This is particularly important when using aggregates of marginal strength in road construction. This study investigates the impact of aggregate breakage on UGM behavior under triaxial loading, using the Discrete Element Method (DEM) for computational analysis. The model examines how aggregate breakage influences UGM response for two different types of aggregates. The DEM results are compared with experimental data from the literature. Findings show that particle fracture significantly influences the maximum deviatoric stress that the UGM can endure under two different confining pressures, highlighting the importance of aggregate strength in determining UGM performance.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Unbound granular materials
en
dc.subject
triaxial testing
en
dc.subject
discrete element method (DEM)
en
dc.title
A Numerical Study of the Effect of Aggregate Fracture on the Unbound Granular Materials Response under Triaxial Loading
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10780
-
dc.contributor.affiliation
KTH Royal Institute of Technology, Sweden
-
dc.contributor.affiliation
KTH Royal Institute of Technology, Sweden
-
dc.contributor.affiliation
KTH Royal Institute of Technology, Sweden
-
dc.contributor.affiliation
Luleå University of Technology, Sweden
-
dc.relation.isbn
978-3-901912-99-3
-
dc.relation.doi
10.34726/9259
-
dc.description.startpage
492
-
dc.description.endpage
495
-
dc.rights.holder
TU Wien, E230-03 Road Engineering
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria
-
tuw.container.volume
IV
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
tuw.relation.publisher
TU Wien, E230-03 Road Engineering
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17644048
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0002-2449-4573
-
tuw.author.orcid
0000-0002-0596-228X
-
tuw.author.orcid
0000-0002-1041-0244
-
tuw.author.orcid
0000-0001-7674-8582
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0003-2153-9315
-
tuw.editor.orcid
0000-0002-8329-8687
-
tuw.editor.orcid
0000-0003-4101-1964
-
tuw.event.name
Advances in Materials and Pavement Performance Prediction 2025 (AM3P 2025)