<div class="csl-bib-body">
<div class="csl-entry">Sedighian-Fard, M., Golroo, A., Rasti, M., & Nouri, S. (2025). Autonomous Synthetic Data Generation for Asphalt Pavement Crack Segmentation Using Generative Models. In L. Eberhardsteiner, B. Hofko, & R. Blab (Eds.), <i>Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria</i> (pp. 567–570). TU Wien, E230-03 Road Engineering. https://doi.org/10.34726/10781</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219290
-
dc.identifier.uri
https://doi.org/10.34726/10781
-
dc.description.abstract
This study addresses the challenge of limited annotated datasets in pavement crack analysis by integrating synthetic data generation with automated segmentation models. The Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) was utilized to generate realistic synthetic pavement images, and the U-Net model was used to enhance segmentation accuracy. Current datasets, such as Crack500, lack sufficient size and diversity, limiting model performance. By augmenting the dataset with synthetic images in increments of 20% to 2000%, segmentation performance improved significantly. The superior model, trained with a 2000% increase in synthetic data, achieved an Intersection over Union (IoU) score of 0.92, demonstrating the effectiveness of data augmentation in improving segmentation. Its robustness powers were shown through validation on myriad real-world datasets, indicating good performance across different crack patterns and imaging necessities. These findings highlight the potential of combining generative and segmentation models to address data scarcity in pavement management.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
synthetic
en
dc.subject
data generation
en
dc.subject
asphalt pavement crack
en
dc.subject
segmentation
en
dc.subject
generative models
en
dc.title
Autonomous Synthetic Data Generation for Asphalt Pavement Crack Segmentation Using Generative Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10781
-
dc.contributor.affiliation
Amirkabir University of Technology, Iran (Islamic Republic of)
-
dc.contributor.affiliation
Amirkabir University of Technology, Iran (Islamic Republic of)
-
dc.contributor.affiliation
University of Oulu, Finland
-
dc.contributor.affiliation
University of Oulu, Finland
-
dc.relation.isbn
978-3-901912-99-3
-
dc.relation.doi
10.34726/9259
-
dc.description.startpage
567
-
dc.description.endpage
570
-
dc.rights.holder
TU Wien, E230-03 Road Engineering
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria
-
tuw.container.volume
IV
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
tuw.relation.publisher
TU Wien, E230-03 Road Engineering
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17644050
-
dc.description.numberOfPages
4
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0003-2153-9315
-
tuw.editor.orcid
0000-0002-8329-8687
-
tuw.editor.orcid
0000-0003-4101-1964
-
tuw.event.name
Advances in Materials and Pavement Performance Prediction 2025 (AM3P 2025)
-
tuw.event.startdate
07-05-2025
-
tuw.event.enddate
09-05-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien/E230-03
-
tuw.event.presenter
Sedighian-Fard, M.
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Verkehrswesen
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
2013
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
70
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairetype
conference paper
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
Amirkabir University of Technology, Iran (Islamic Republic of)
-
crisitem.author.dept
Amirkabir University of Technology, Iran (Islamic Republic of)