<div class="csl-bib-body">
<div class="csl-entry">Garita-Durán, H., Khedkar, A., & Kaliske, M. (2025). Exploring physics-informed recurrent neural networks for constitutive modeling of concrete pavements. In L. Eberhardsteiner, B. Hofko, & R. Blab (Eds.), <i>Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria</i> (pp. 551–554). TU Wien, E230-03 Road Engineering. https://doi.org/10.34726/10797</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219306
-
dc.identifier.uri
https://doi.org/10.34726/10797
-
dc.description.abstract
This study proposes a preliminary investigation into the use of physics-informed recurrent neural networks for constitutive modeling of concrete. Traditional empirical models for concrete often face limitations in capturing complex, path-dependent behaviors due to the constraints of experimental datasets. To address this, we explore the integration of recurrent neural network architectures, with foundational principles from continuum mechanics, including thermodynamic consistency and objectivity. This theoretical framework aims to establish a foundation for future developments of hybrid models that reduce reliance on extensive experimental data while maintaining physical interpretability. The work highlights key challenges, including incorporating physical constraints into machine learning architectures and addressing the material's inherent complexity, setting the stage for further empirical validation and refinement.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
recurrent neural networks
en
dc.subject
constitutive modeling
en
dc.subject
physics-informed neural networks
en
dc.title
Exploring physics-informed recurrent neural networks for constitutive modeling of concrete pavements
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10797
-
dc.contributor.affiliation
Technische Universität Dresden, Germany
-
dc.contributor.affiliation
Technische Universität Dresden, Germany
-
dc.contributor.affiliation
Technische Universität Dresden, Germany
-
dc.relation.isbn
978-3-901912-99-3
-
dc.relation.doi
10.34726/9259
-
dc.description.startpage
551
-
dc.description.endpage
554
-
dc.rights.holder
TU Wien, E230-03 Road Engineering
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria
-
tuw.container.volume
IV
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
tuw.relation.publisher
TU Wien, E230-03 Road Engineering
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17644067
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0009-0000-2628-883X
-
tuw.author.orcid
0009-0000-8808-5755
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0003-2153-9315
-
tuw.editor.orcid
0000-0002-8329-8687
-
tuw.editor.orcid
0000-0003-4101-1964
-
tuw.event.name
Advances in Materials and Pavement Performance Prediction 2025 (AM3P 2025)