<div class="csl-bib-body">
<div class="csl-entry">Talaghat, M. A., Sedighian-Fard, M., Golroo, A., & Rasti, M. (2025). Leveraging Digital Twin Technology for Data-Driven Pavement Maintenance. In L. Eberhardsteiner, B. Hofko, R. Blab, & TU Wien (Eds.), <i>Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria</i> (pp. 604–608). TU Wien, E230-03 Road Engineering. https://doi.org/10.34726/10886</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219478
-
dc.identifier.uri
https://doi.org/10.34726/10886
-
dc.description.abstract
Integrating Digital Twin (DT) technology with data from automated pavement data collection resources, such as Autonomous Vehicles (AVs), offers a revolutionary approach to proactive pavement maintenance planning. This article proposes a comprehensive framework that utilizes diverse data sources, including AVs, sensors, automated data collection vehicles, and maintenance vehicles, to provide precise, real-time pavement condition data for better-informed maintenance decisions. Building Information Modeling (BIM) is used to create a digital representation of the pavement, facilitating visualization and simulation, leading to cognitive DT. Advanced AI analytics are utilized to detect pavement distress, optimize maintenance planning, and predict deterioration. The framework's strength is demonstrated through a case study on a Finnish motorway, highlighting potential improvements in maintenance efficiency, reduced reactive repair costs, and enhanced road safety. This research highlights the benefits of DT technology in pavement maintenance, including improved performance, longevity, and sustainability of road infrastructures, paving the way for wider adoption by road agencies.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Digital twin
en
dc.subject
pavement
en
dc.subject
framework
en
dc.subject
blueprint
en
dc.subject
condition
en
dc.title
Leveraging Digital Twin Technology for Data-Driven Pavement Maintenance
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/10886
-
dc.contributor.affiliation
Amirkabir University of Technology, Iran (Islamic Republic of)
-
dc.contributor.affiliation
Amirkabir University of Technology, Iran (Islamic Republic of)
-
dc.contributor.affiliation
Amirkabir University of Technology, Iran (Islamic Republic of)
-
dc.contributor.affiliation
University of Oulu, Finland
-
dc.relation.isbn
978-3-901912-99-3
-
dc.relation.doi
10.34726/9259
-
dc.description.startpage
604
-
dc.description.endpage
608
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Materials and Pavement Performance Prediction IV : Contributions to the 4th International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2025), 7-9 May 2025, Vienna, Austria
-
tuw.container.volume
IV
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Advances in Materials and Pavements Performance Prediction
-
tuw.relation.publisher
TU Wien, E230-03 Road Engineering
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17651396
-
dc.description.numberOfPages
5
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0003-2153-9315
-
tuw.editor.orcid
0000-0002-8329-8687
-
tuw.editor.orcid
0000-0003-4101-1964
-
tuw.event.name
Advances in Materials and Pavement Performance Prediction 2025 (AM3P 2025)
en
tuw.event.startdate
07-05-2025
-
tuw.event.enddate
09-05-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien/E230-03
-
tuw.event.presenter
Talaghat, M. A.
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Verkehrswesen
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
2013
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
70
-
dc.contributor.editorgroup
TU Wien
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openairetype
conference paper
-
item.openaccessfulltext
Open Access
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
crisitem.author.dept
Amirkabir University of Technology, Iran (Islamic Republic of)
-
crisitem.author.dept
Amirkabir University of Technology, Iran (Islamic Republic of)
-
crisitem.author.dept
Amirkabir University of Technology, Iran (Islamic Republic of)