<div class="csl-bib-body">
<div class="csl-entry">Schwarzinger, T., Steindl, G., Frühwirth, T., Preindl, T., Diwold, K., Ehrenmüller, K., & Ekaputra, F. J. (2025). SigSPARQL: Signals as a First-Class Citizen when Querying Knowledge Graphs. In <i>Linking Meaning: Semantic Technologies Shaping the Future of AI : Proceedings of the 21st International Conference on Semantic Systems, 3-5 September 2025, Vienna, Austria</i> (pp. 159–175). https://doi.org/10.3233/SSW250018</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219668
-
dc.description.abstract
Purpose:
Cyber-Physical Systems (CPSs) integrate computation and physical processes, producing time series data from thousands of sensors. Knowledge graphs can contextualize these data, yet current approaches that are applicably to monitoring CPS rely on observation-based approaches. This limits the ability to express computations on sensor data, especially when no assumptions can be made about sampling synchronicity or sampling rates.
Methodology:
We propose an approach for integrating knowledge graphs with signals that model run-time sensor data as functions from time to data. To demonstrate this approach, we introduce SigSPARQL, a query language that can combine RDF data and signals. We assess its technical feasibility with a prototype and demonstrate its use in a typical CPS monitoring use case.
Findings:
Our approach enables queries to combine graph-based knowledge with signals, overcoming some key limits of observation-based methods. The developed prototype successfully demonstrated feasibility and applicability.
Value:
This work presents a query-based approach for CPS monitoring that integrates knowledge graphs and signals, alleviating problems of observation-based approaches. By leveraging system knowledge, it enables operators to run a single query across different system instances within the same domain. Future work will extend SigSPARQL with additional signal functions and evaluate it in large-scale CPS deployments.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
Studies on the Semantic Web
-
dc.subject
Knowledge Graph
en
dc.subject
Time Series
en
dc.subject
SPARQL
en
dc.subject
Semantic Web
en
dc.title
SigSPARQL: Signals as a First-Class Citizen when Querying Knowledge Graphs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9781643686165
-
dc.description.startpage
159
-
dc.description.endpage
175
-
dc.relation.grantno
894802
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Linking Meaning: Semantic Technologies Shaping the Future of AI : Proceedings of the 21st International Conference on Semantic Systems, 3-5 September 2025, Vienna, Austria
-
tuw.peerreviewed
true
-
tuw.project.title
Semantics-based Explanation of Cyber-physical Systems
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.linking
https://doi.org/10.5281/zenodo.15260651
-
tuw.publication.orgunit
E191-03 - Forschungsbereich Automation Systems
-
tuw.publisher.doi
10.3233/SSW250018
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0009-0003-1433-2049
-
tuw.author.orcid
0000-0002-9035-9206
-
tuw.author.orcid
0000-0001-8133-4747
-
tuw.author.orcid
0000-0001-7268-5393
-
tuw.author.orcid
0000-0002-6265-4064
-
tuw.author.orcid
0000-0003-1815-8167
-
tuw.author.orcid
0000-0003-4569-2496
-
tuw.event.name
21st International Conference on Semantic Systems
en
tuw.event.startdate
03-09-2025
-
tuw.event.enddate
05-09-2025
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vienna
-
tuw.event.country
AT
-
tuw.event.presenter
Schwarzinger, Tobias
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
crisitem.project.grantno
894802
-
crisitem.author.dept
E191-03 - Forschungsbereich Automation Systems
-
crisitem.author.dept
E191-03 - Forschungsbereich Automation Systems
-
crisitem.author.dept
E191-03 - Forschungsbereich Automation Systems
-
crisitem.author.dept
E191-03 - Forschungsbereich Automation Systems
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0009-0003-1433-2049
-
crisitem.author.orcid
0000-0002-9035-9206
-
crisitem.author.orcid
0000-0001-8133-4747
-
crisitem.author.orcid
0000-0001-7268-5393
-
crisitem.author.orcid
0000-0002-6265-4064
-
crisitem.author.orcid
0000-0003-1815-8167
-
crisitem.author.orcid
0000-0003-4569-2496
-
crisitem.author.parentorg
E191 - Institut für Computer Engineering
-
crisitem.author.parentorg
E191 - Institut für Computer Engineering
-
crisitem.author.parentorg
E191 - Institut für Computer Engineering
-
crisitem.author.parentorg
E191 - Institut für Computer Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering