<div class="csl-bib-body">
<div class="csl-entry">Isychev, A., Wüstholz, V., & Christakis, M. (2025). Lazy Testing of Machine-Learning Models. In <i>Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence</i> (pp. 7428–7436). https://doi.org/10.24963/ijcai.2025/826</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219886
-
dc.description.abstract
Checking the reliability of machine-learning models is a crucial, but challenging task. Nomos is an existing, automated framework for testing general, user-provided functional properties of models, including so-called hyperproperties expressed over more than one model execution. Nomos aims to find model inputs that expose ``bugs'', that is, property violations. However, performing thousands of model invocations during testing is costly both in terms of time and money (for metered APIs, such as OpenAI's). We present LaZ (pronounced ``lazy''), an extension of Nomos that automatically minimizes the number of model invocations to boost the test throughput and thereby find bugs more efficiently. During test execution, LaZ automatically identifies redundant invocations---invocations where the model output does not affect the final test outcome---and skips them, much like lazy evaluation in certain programming languages. This optimization enables a second one that dynamically reorders model invocations to skip the more expensive ones. As a result, LaZ finds the same number of bugs as Nomos, but does so median 33% and up to 60% faster.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
machine learning
en
dc.subject
testing
en
dc.subject
static analysis
en
dc.title
Lazy Testing of Machine-Learning Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
ConsenSys (United States), United States of America (the)
-
dc.relation.isbn
978-1-956792-06-5
-
dc.description.startpage
7428
-
dc.description.endpage
7436
-
dc.relation.grantno
DOC1345324
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence
-
tuw.peerreviewed
true
-
tuw.project.title
Structured Doctoral Program on Automated Reasoning
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publisher.doi
10.24963/ijcai.2025/826
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0001-6375-0421
-
tuw.author.orcid
0000-0003-1496-1104
-
tuw.author.orcid
0000-0002-2649-1958
-
tuw.event.name
Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2025))
en
tuw.event.startdate
16-08-2025
-
tuw.event.enddate
22-08-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Montreal
-
tuw.event.country
CA
-
tuw.event.presenter
Isychev, Anastasia
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
DOC1345324
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
ConsenSys (United States), United States of America (the)
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.orcid
0000-0001-6375-0421
-
crisitem.author.orcid
0000-0003-1496-1104
-
crisitem.author.orcid
0000-0002-2649-1958
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering