<div class="csl-bib-body">
<div class="csl-entry">Gutschka, C., Richter, S., Hahn, R., Wojcik, T., Ntemou, E., Primetzhofer, D., Kolozsvári, S., Polcik, P., Jerg, C., Ramm, J., & Riedl-Tragenreif, H. (2025, September 15). <i>Correlation of ab initio methods with experimental phase exploration of TM-Al/Si-C thin film materials</i> [Poster Presentation]. FEMS EUROMAT 2025, Granada, Spain. http://hdl.handle.net/20.500.12708/219906</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/219906
-
dc.description.abstract
Thin films, consisting of Transition Metal Carbides (TMCs), are known for their remarkable thermal stability, with melting points reaching up to 4000 °C, and their excellent mechanical properties, including exceptional hardness. These properties make Physical Vapor Deposited (PVD) TMCs indispensable materials for challenging applications in the aerospace and tooling industries. Nevertheless, their limited oxidation resistance inspires the alloying of strong oxide formers such as Al and Si to improve their high-temperature performance. Setting the focus on metastable, fcc-structured, TM-X-C (TM = Ti, Zr, Hf, Ta, W and X = Al, Si) solid solutions, Density Functional Theory (DFT) was used in order to access the metastable solubility trends, by the means energy of formation and unit cell distortion. In a second step, these theoretical findings are correlated with an experimental approach in which over 260 different compositions within these ten material systems are grown by combinatorial magnetron sputtering. Phase formation, mechanical properties, and oxidation resistance are subsequently analyzed by X-ray diffraction, nanoindentation (CSM method), and Transmission Electron Microscopy (TEM) for selected states. The comprehensive analysis of structure-property relationships of these ternary TMC thin films provides crucial insights into the so-far relatively unexplored phase space and opens up opportunities for advanced applications. Keywords: Carbides; Phase screening; Structure-mechanical properties; Oxide formers; PVD;
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Carbides
en
dc.subject
thin films
en
dc.subject
ab initio
en
dc.subject
oxidation
en
dc.subject
DFT
en
dc.title
Correlation of ab initio methods with experimental phase exploration of TM-Al/Si-C thin film materials
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
Physics and Astronomy - Uppsala University (Uppsala, SE)
-
dc.contributor.affiliation
Plansee (Germany)
-
dc.contributor.affiliation
Plansee (Germany)
-
dc.contributor.affiliation
Oerlikon (Liechtenstein)
-
dc.contributor.affiliation
Oerlikon (Liechtenstein)
-
dc.relation.grantno
CDL-SEC
-
dc.relation.grantno
PAT1205324
-
dc.type.category
Poster Presentation
-
tuw.project.title
Oberflächentechnik von hochbeanspruchten Präzisionskomponenten
-
tuw.project.title
Unravelling the Solid Self-Lubrication Mechanisms of Boron Oxide on Transition Metal Boride Thin Films
-
tuw.researchinfrastructure
Röntgenzentrum
-
tuw.researchinfrastructure
Universitäre Service-Einrichtung für Transmissionselektronenmikroskopie