<div class="csl-bib-body">
<div class="csl-entry">Ackerl, M. M. (2025). <i>Visualization of Darboux Cyclides</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.124788</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.124788
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220064
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
Darboux cyclides are algebraic surfaces that can be interpreted as an intersection of the Möbius-quadric with another quadric in four-dimensional projective space. Based on the existence of coverings by circles of Darboux cyclides, various geometricalmaps between circles are defined, which induce polygon meshes. Using the Python librarypyddg, these polygon meshes are visualized in the open-source graphics software Blenderas surfaces. pyddg is an implementation of geometrical structures following the Erlangenprogram, which was initially released in 2022 by the geometry group at TU-Berlin. Selected parts of the visualization methods are being made available by embedding them into thelibrary. Pottmann et al. showed that certain types of Darboux cyclides carry 3-webs of circles. Webs are configurations of curves on topological surfaces, which are invariant under homeomorphisms. For 3-webs on smooth Darboux cyclides, we prove an inequality that could berelevant for proving the convergence of algorithms for closing such webs.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Darboux cyclides
en
dc.subject
Geometric visualization
en
dc.subject
pyddg
en
dc.title
Visualization of Darboux Cyclides
en
dc.title.alternative
Visualisierung Darboux´scher Zykliden
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.124788
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Michael Matthias Ackerl
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie