<div class="csl-bib-body">
<div class="csl-entry">Hajdu, M. (2025). <i>Redundancy, Rewriting, and Induction</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.136950</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.136950
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220190
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis addresses challenges and presents advancements in first-order theorem proving with equality in the framework of saturation-based theorem proving with the superposition calculus.To achieve efficiency in first-order reasoning, saturation-based theorem proving relies heavily on the concept of redundancy. The main aim of the thesis is to improve this concept and redundancy detection. This endeavor is complementedby rewriting techniques that are indispensable in equality reasoning. Beyond first-order logic, the thesis also aims to progress inductive reasoning, where both redundancy and rewriting are used to address several challenges. Our theoretical advancements are demonstrated in practice using the saturation-based theorem prover Vampire.The first two parts of the thesis improve the notion of redundancy in saturation-based theorem proving. In the first part, we introduce a generalization of standard redundancy in saturation, called partial redundancy. The second part exploits properties of term rewriting to reduce the search space of superposition reasoning with so-called reducibility constraints. We prove the refutational completeness of the superposition calculus with partial redundancy and reducibility constraints, respectively. We also show novel ways to detect redundancies in superposition reasoning. In the third part of the thesis, we utilize term rewriting to synthesize lemmasfor inductive reasoning in saturation. Despite weakening the restrictions of superposition reasoning, we maintain efficiency by applying ideas from redundancyin first-order reasoning to this domain. The fourth and last part of the thesis introduces a general indexing data structure, called term ordering diagram, to solve a challenge in redundancy detection related to simplification orders.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
redundancy
en
dc.subject
rewriting
en
dc.subject
induction
en
dc.subject
first-order theorem proving
en
dc.subject
saturation-based theorem proving
en
dc.subject
superposition calculus
en
dc.title
Redundancy, Rewriting, and Induction
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.136950
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Márton Hajdu
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17676320
-
dc.description.numberOfPages
141
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-8273-2613
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-8299-2714
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.openairetype
doctoral thesis
-
item.mimetype
application/pdf
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering