<div class="csl-bib-body">
<div class="csl-entry">Armeniakos, S., & Daniilidis, A. (2025). <i>Characterizing Maximal Monotone Operators with Unique Representation</i>. ArXiv. https://doi.org/10.48550/arXiv.2510.09368</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220395
-
dc.description.abstract
We study maximal monotone operators whose Fitzpatrick family reduces to a singleton; such operators will be called uniquely representable. We show that every such operator is cyclically monotone (hence, for some convex function ) if and only if it is 3-monotone. In Radon-Nikodým spaces, under mild conditions (which become superfluous in finite dimensions), we prove that a subdifferential operator is uniquely representable if and only if is the sum of a support and an indicator function of suitable convex sets.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Maximal monotone operator
en
dc.subject
Fitzpatrick function
en
dc.subject
subdifferential
en
dc.subject
Radon-Nikodým property
en
dc.title
Characterizing Maximal Monotone Operators with Unique Representation
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2510.09368
-
dc.relation.grantno
P 36344N
-
tuw.project.title
Unilateralität und Asymmetrie in der Variationsanalyse
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.48550/arXiv.2510.09368
-
dc.description.numberOfPages
26
-
tuw.author.orcid
0000-0003-4837-694X
-
tuw.publisher.server
ArXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairetype
preprint
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 36344N
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.orcid
0000-0003-4837-694X
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik