Daniilidis, A., Salas, D., & Tapia Garcia, S. (2025). Determination of (unbounded) convex functions via Crandall-Pazy directions. Archiv. https://doi.org/10.48550/arXiv.2504.07259
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
ArXiv-ID:
2504.07259v1
-
Datum (veröffentlicht):
2025
-
Umfang:
25
-
Preprint-Server:
Archiv
-
Keywords:
convex functions; slope determination; asymptotic direction
en
Abstract:
It has been recently discovered that a convex function can be determined by its slopes and its infimum value, provided this latter is finite. The result was extended to non convex functions by replacing the infimum value by the set of all critical and asymptotically critical values. In all these results boundedness from below plays a crucial role and is generally admitted to be a paramount assumption. Nonetheless, this work develops a new technique that allows to also determine a large class of unbounded from below convex functions, by means of a Neumann-type condition related to the Crandall-Pazy direction.
en
Projekttitel:
Unilateralität und Asymmetrie in der Variationsanalyse: P 36344N (FWF - Österr. Wissenschaftsfonds)
-
Forschungsschwerpunkte:
Mathematical Methods in Economics: 20% Fundamental Mathematics Research: 80%