<div class="csl-bib-body">
<div class="csl-entry">Daniilidis, A., & Tapia Garcia, S. (2025). <i>Differentiable functions with surjective Clarke Jacobians</i>. HAL (open archive).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220398
-
dc.description.abstract
We construct, for any n,m ∈ N \{0}, a differentiable locally Lipschitz function f : Rn →Rm which is C1 on the complement of an H1-null set E ⊂ Rn and has the property that the range of its limiting Jacobian on E contains the family of all nonempty compact connected sets of (m×n)-matrices. As a consequence, the Clarke Jacobian Jcf is surjective, that is, its range contains every nonempty compact convex subset of (m×n)-matrices. This reveals a significant difference between differentiable functions and C1-functions, since for a C1-function the Clarke Jacobian is always a singleton. As a by-product, we also obtain examples of C1-smooth functions from Rn to Rm (for any n,m ∈ N\{0}) with surjective derivative, that is, Im(Df) = Rm×n.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Limiting Jacobian
en
dc.subject
differentiable Lipschitz function
en
dc.subject
Whitney extension
en
dc.subject
Cantor set
en
dc.title
Differentiable functions with surjective Clarke Jacobians
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.relation.grantno
P 36344N
-
tuw.project.title
Unilateralität und Asymmetrie in der Variationsanalyse
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0003-4837-694X
-
tuw.publisher.server
HAL (open archive)
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.openairetype
preprint
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 36344N
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.dept
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
crisitem.author.orcid
0000-0003-4837-694X
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik