<div class="csl-bib-body">
<div class="csl-entry">Ganian, R., Rocton, M., & Wietheger, S. (2025). Training One-Dimensional Graph Neural Networks is NP-Hard. In <i>The Thirteenth International Conference on Learning Representations : ICLR 2025</i>. Thirteenth International Conference on Learning Representations, Singapore.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220604
-
dc.description
https://openreview.net/forum?id=7BESdFZ7YA
-
dc.description.abstract
We initiate the study of the computational complexity of training graph neural networks (GNNs). We consider the classical node classification setting; there, the intractability of training multidimensonal GNNs immediately follows from known lower bounds for training classical neural networks (and holds even for trivial GNNs). However, one-dimensional GNNs form a crucial case of interest: the computational complexity of training such networks depends on both the graphical structure of the network and the properties of the involved activation and aggregation functions. As our main result, we establish the NP-hardness of training ReLU-activated one-dimensional GNNs via a highly non-trivial reduction. We complement this result with algorithmic upper bounds for the training problem in the ReLU-activated and linearly-activated settings.
en
dc.language.iso
en
-
dc.subject
Computational Complexity
en
dc.subject
Graph Neural Networks
en
dc.subject
Training
en
dc.subject
ReLU
en
dc.title
Training One-Dimensional Graph Neural Networks is NP-Hard
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Thirteenth International Conference on Learning Representations : ICLR 2025
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0002-7762-8045
-
tuw.author.orcid
0000-0002-7158-9022
-
tuw.author.orcid
0000-0002-0734-0708
-
tuw.event.name
Thirteenth International Conference on Learning Representations
en
tuw.event.startdate
24-04-2025
-
tuw.event.enddate
28-04-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
SG
-
tuw.event.presenter
Ganian, Robert
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity