<div class="csl-bib-body">
<div class="csl-entry">Ganian, R., Khazaliya, L., Rocton, M., & Mc Inerney, F. (2025). The Computational Complexity of Positive Non-Clashing Teaching in Graphs. In <i>The Thirteenth International Conference on Learning Representations : ICLR 2025</i>. Thirteenth International Conference on Learning Representations (ICLR 2025), Singapore. International Conference on Learning Representations (ICLR).</div>
</div>
We study the classical and parameterized complexity of computing the positive non-clashing teaching dimension of a set of concepts, that is, the smallest number of examples per concept required to successfully teach an intelligent learner under the considered, previously established model. For any class of concepts, it is known that this problem can be effortlessly transferred to the setting of balls in a graph . We establish (1) the NP-hardness of the problem even when restricted to instances with positive non-clashing teaching dimension and where all balls in the graph are present, (2) near-tight running time upper and lower bounds for the problem on general graphs, (3) fixed-parameter tractability when parameterized by the vertex integrity of , and (4) a lower bound excluding fixed-parameter tractability when parameterized by the feedback vertex number and pathwidth of , even when combined with . Our results provide a nearly complete understanding of the complexity landscape of computing the positive non-clashing teaching dimension and answer open questions from the literature.
en
dc.language.iso
en
-
dc.subject
non-clashing teaching
en
dc.subject
positive teaching
en
dc.subject
computational complexity
en
dc.subject
NP-hardness
en
dc.subject
parameterized complexity
en
dc.title
The Computational Complexity of Positive Non-Clashing Teaching in Graphs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Telefónica (Spain), Spain
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Thirteenth International Conference on Learning Representations : ICLR 2025
-
tuw.peerreviewed
true
-
tuw.relation.publisher
International Conference on Learning Representations (ICLR)
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-7762-8045
-
tuw.author.orcid
0009-0002-3012-7240
-
tuw.author.orcid
0000-0002-7158-9022
-
tuw.event.name
Thirteenth International Conference on Learning Representations (ICLR 2025)
en
tuw.event.startdate
24-04-2025
-
tuw.event.enddate
28-04-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
SG
-
tuw.event.presenter
Ganian, Robert
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity