<div class="csl-bib-body">
<div class="csl-entry">Jendal, T., Lissandrini, M., Dolog, P., & Hose, K. (2025). The Limits of Graph Samplers for Training Inductive Recommender Systems. <i>Proceedings of the VLDB Endowment</i>, <i>18</i>(8), 2496–2504. https://doi.org/10.14778/3742728.3742743</div>
</div>
-
dc.identifier.issn
2150-8097
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220871
-
dc.description.abstract
Inductive Recommender Systems are capable of recommending for new users and with new items thus avoiding the need to retrain after new data reaches the system. However, these methods are still trained on all the data available, requiring multiple days to train a single model, without counting hyperparameter tuning. In this work we focus on graph-based recommender systems, i.e., systems that model the data as a heterogeneous network. In other applications, graph sampling allows to study a subgraph and generalize the findings to the original graph. Thus, we investigate the applicability of sampling techniques for this task. We test on three real world datasets, with three state-of-the-art inductive methods, and using six different sampling methods. We find that its possible to maintain performance using only 50% of the training data with up to 86% percent decrease in training time; however, using less training data leads to far worse performance. Further, we find that when it comes to data for recommendations, graph sampling should also account for the temporal dimension. Therefore, we find that if higher data reduction is needed, new graph based sampling techniques should be studied and new inductive methods should be designed.
en
dc.language.iso
en
-
dc.publisher
ASSOC COMPUTING MACHINERY
-
dc.relation.ispartof
Proceedings of the VLDB Endowment
-
dc.subject
Recommender Systems
en
dc.subject
Sampling
en
dc.subject
Graph-based Recommender Systems
en
dc.title
The Limits of Graph Samplers for Training Inductive Recommender Systems
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
University of Verona, Italy
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.description.startpage
2496
-
dc.description.endpage
2504
-
dc.type.category
Original Research Article
-
tuw.container.volume
18
-
tuw.container.issue
8
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
dcterms.isPartOf.title
Proceedings of the VLDB Endowment
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.14778/3742728.3742743
-
dc.date.onlinefirst
2025-04-01
-
dc.identifier.eissn
2150-8097
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-2229-9042
-
tuw.author.orcid
0000-0001-7922-5998
-
tuw.author.orcid
0000-0003-1842-9131
-
tuw.author.orcid
0000-0001-7025-8099
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
University of Verona
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence