<div class="csl-bib-body">
<div class="csl-entry">Negishi, M., Gärtner, T., & Welke, P. (2025). WILTing Trees: Interpreting the Distance Between MPNN Embeddings. In <i>Proceedings of the 42nd International Conference on Machine Learning</i> (pp. 45852–45876). PMLR.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220891
-
dc.description.abstract
We investigate the distance function learned by message passing neural networks (MPNNs) in specific tasks, aiming to capture the functional distance between prediction targets that MPNNs implicitly learn. This contrasts with previous work, which links MPNN distances on arbitrary tasks to structural distances on graphs that ignore task-specific information. To address this gap, we distill the distance between MPNN embeddings into an interpretable graph distance. Our method uses optimal transport on the Weisfeiler Leman Labeling Tree (WILT), where the edge weights reveal subgraphs that strongly influence the distance between embeddings. This approach generalizes two well-known graph kernels and can be computed in linear time. Through extensive experiments, we demonstrate that MPNNs define the relative position of embeddings by focusing on a small set of subgraphs that are known to be functionally important in the domain.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Proceedings of Machine Learning Research
-
dc.subject
Machine Learning
en
dc.subject
Weisfeiler Leman test
en
dc.subject
Graph Neural Networks
en
dc.subject
Interpretability
en
dc.subject
Graph metric
en
dc.subject
Graph distance
en
dc.title
WILTing Trees: Interpreting the Distance Between MPNN Embeddings
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
45852
-
dc.description.endpage
45876
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 42nd International Conference on Machine Learning
-
tuw.container.volume
267
-
tuw.peerreviewed
true
-
tuw.relation.publisher
PMLR
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publication.orgunit
E056-26 - Fachbereich Automated Reasoning
-
dc.description.numberOfPages
25
-
tuw.author.orcid
0000-0001-5985-9213
-
tuw.author.orcid
0000-0002-2123-3781
-
tuw.event.name
42nd International Conference on Machine Learning (ICML 2025)
en
tuw.event.startdate
13-07-2025
-
tuw.event.enddate
19-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Gärtner, Thomas
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.orcid
0000-0002-2123-3781
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering