<div class="csl-bib-body">
<div class="csl-entry">Furutanpey, A., Walser, C., Raith, P., Frangoudis, P. A., & Dustdar, S. (2025). <i>Leveraging Neural Graph Compilers in Machine Learning Research for Edge-Cloud Systems</i>. arXiv. https://doi.org/10.34726/11300</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220926
-
dc.identifier.uri
https://doi.org/10.34726/11300
-
dc.description.abstract
This work presents a comprehensive evaluation of neural network graph compilers across heterogeneous hardware platforms, addressing the critical gap between theoretical optimization techniques and practical deployment scenarios. We demonstrate how vendor-specific optimizations can invalidate relative performance comparisons between architectural archetypes, with performance advantages sometimes completely reversing after compilation. Our systematic analysis reveals that graph compilers exhibit performance patterns highly dependent on both neural architecture and batch sizes. Through fine-grained block-level experimentation, we establish that vendor-specific compilers can leverage repeated patterns in simple architectures, yielding disproportionate throughput gains as model depth increases. We introduce novel metrics to quantify a compiler's ability to mitigate performance friction as batch size increases. Our methodology bridges the gap between academic research and practical deployment by incorporating compiler effects throughout the research process, providing actionable insights for practitioners navigating complex optimization landscapes across heterogeneous hardware environments.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Deep Learning
en
dc.subject
Neural Networks
en
dc.subject
Compilers
en
dc.subject
Graph Optimization
en
dc.subject
Benchmarking
en
dc.title
Leveraging Neural Graph Compilers in Machine Learning Research for Edge-Cloud Systems
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/11300
-
dc.identifier.arxiv
2504.20198
-
dc.contributor.affiliation
TU Wien, Austria
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/ARXIV.2504.20198
-
dc.identifier.libraryid
AC17697182
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0001-5621-7899
-
tuw.author.orcid
0000-0003-3293-9437
-
tuw.author.orcid
0000-0001-6901-7714
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.cerifentitytype
Publications
-
item.openairetype
preprint
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0001-5621-7899
-
crisitem.author.orcid
0000-0003-3293-9437
-
crisitem.author.orcid
0000-0001-6901-7714
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering