<div class="csl-bib-body">
<div class="csl-entry">Daniilidis, A., Garrido, M. I., Jaramillo, J. A., & Tapia Garcia, S. (2025). Horofunction extension and metric compactifications. <i>Transactions of the American Mathematical Society Series B</i>, <i>12</i>, 1130–1155. https://doi.org/10.1090/btran/234</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/220985
-
dc.description.abstract
A necessary and sufficient condition for the horofunction extension (X, d)h of a metric space (X, d) to be a compactification is hereby established. The condition clarifies previous results on proper metric spaces and geodesic spaces and yields the following characterization: a Banach space is Gromovcompactifiable under any renorming if and only if it does not contain an isomorphic copy of ℓ¹ . In addition, it is shown that, up to an adequate renorming, every Banach space is Gromov-compactifiable. Therefore, the property of being Gromov-compactifiable is not invariant under bi-Lipschitz equivalence.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
American Mathematical Society
-
dc.relation.ispartof
Transactions of the American Mathematical Society Series B
-
dc.subject
compactification
en
dc.subject
horofunction extension
en
dc.subject
Metric space
en
dc.subject
normed space
en
dc.subject
ℓ1-criterium
en
dc.title
Horofunction extension and metric compactifications