<div class="csl-bib-body">
<div class="csl-entry">Colombo, A., Baldazzi, T., Bellomarini, L., Sallinger, E., & Ceri, S. (2024). Template-based Explainable Inference over High-Stakes Financial Knowledge Graphs. In <i>Advances in Database Technology - Volume 28 Proceedings 28th International Conference on Extending Database Technology (EDBT 2025)</i> (pp. 503–515). OpenProceedings.org. https://doi.org/10.48786/edbt.2025.40</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/221116
-
dc.description.abstract
Declarative query languages based on logic programming, like Datalog and its extensions, have recently found successful applications in modeling complex knowledge-based scenarios, such as reasoning over Enterprise Knowledge Graphs (EKG), by encoding business rules to derive new valuable knowledge. Presenting this derived knowledge with comprehensible natural language explanations is paramount to increasing transparency, accountability, and fairness in AI-based systems. While Large Language Models (LLMs) offer promising directions, full industrial adoption in critical settings requires a trustworthy solution that ensures both accurate, clear explanations and compliance with strict data protection standards (i.e., by not sharing data with third parties). This work introduces a novel approach for the generation of textual explanations from data-driven inference processes where data protection is crucial, such as in sensitive financial applications governed by deductive rules encoded by the Central Bank of Italy. We propose a static structural analysis method that identifies a finite set of reasoning patterns from business rules, which are then used to generate fluent natural language explanations. By capturing the main interconnections between rules, our approach generates explanations comparable in quality to those produced by LLMs, but without requiring data sharing through external APIs or cloud servers, thus ensuring data protection in high-stakes, sensitive applications. Furthermore, our method guarantees that explanations are both correct and complete, unlike LLM-generated ones, which may suffer from critical omissions.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
Template-based Explainable
en
dc.subject
Inference over High-Stakes
en
dc.subject
Financial Knowledge Graphs
en
dc.subject
Datalog
en
dc.subject
Enterprise Knowledge Graphs (EKG)
en
dc.subject
Large Language Models (LLMs)
en
dc.title
Template-based Explainable Inference over High-Stakes Financial Knowledge Graphs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Politecnico di Milano, Italy
-
dc.contributor.affiliation
Roma Tre University, Italy
-
dc.contributor.affiliation
Bank of Italy, Italy
-
dc.contributor.affiliation
Politecnico di Milano, Italy
-
dc.relation.isbn
978-3-89318-098-1
-
dc.relation.issn
2367-2005
-
dc.description.startpage
503
-
dc.description.endpage
515
-
dc.relation.grantno
VRG18-013
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Database Technology - Volume 28 Proceedings 28th International Conference on Extending Database Technology (EDBT 2025)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
OpenProceedings.org
-
tuw.project.title
Scalable Reasoning in Knowledge Graphs
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.48786/edbt.2025.40
-
dc.description.numberOfPages
13
-
tuw.event.name
28th International Conference on Extending Database Technology (EDBT 2025)
en
tuw.event.startdate
25-03-2025
-
tuw.event.enddate
28-03-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Barcelona
-
tuw.event.country
ES
-
tuw.event.presenter
Colombo, Andrea
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
Politecnico di Milano, Italy
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
Bank of Italy, Italy
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
Politecnico di Milano, Italy
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds